Please use this identifier to cite or link to this item: https://dspace.ctu.edu.vn/jspui/handle/123456789/100886
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTran, Van Bang-
dc.contributor.authorPhan, Trong Tien-
dc.date.accessioned2024-05-23T07:27:38Z-
dc.date.available2024-05-23T07:27:38Z-
dc.date.issued2020-
dc.identifier.issn0251-4184-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/100886-
dc.description.abstractThis paper is concerned with the qualitative properties of viscosity solutions to a class of Hamilton-Jacobi equations (HJEs) in Banach spaces. Specifically, based on the concept of β-derivative (Deville et al. 1993), we establish the existence, uniqueness and stability of β-viscosity solutions for a class of HJEs in the form u + H(x, u, Du) = 0. The obtained results in this paper extend earlier works in the literature, for example, Crandall and Lions (J. Funct. Anal. 62, 379-398, 1985, J. Funct. Anal., 65, 368-405, 1986) and Deville et al. (1993).vi_VN
dc.language.isoenvi_VN
dc.relation.ispartofseriesActa mathematica Vietnamica journal;Vol.45, No.03 .- P.571-590-
dc.subjectβ-bornovi_VN
dc.subjectViscosity solutionsvi_VN
dc.subjectHamilton-Jacobi equationsvi_VN
dc.subjectNonlinear partial differential equationsvi_VN
dc.titleOn the existence, uniqueness, and stability of ẞ-viscosity solutions to a class of Hamilton-Jacobi equations in Banach spacesvi_VN
dc.typeArticlevi_VN
Appears in Collections:Acta Mathematica Vietnamica 

Files in This Item:
File Description SizeFormat 
_file_
  Restricted Access
3.28 MBAdobe PDF
Your IP: 18.191.72.220


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.