Please use this identifier to cite or link to this item:
https://dspace.ctu.edu.vn/jspui/handle/123456789/100890
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pham, Duong Thanh | - |
dc.contributor.author | Le, Tung | - |
dc.date.accessioned | 2024-05-23T07:47:34Z | - |
dc.date.available | 2024-05-23T07:47:34Z | - |
dc.date.issued | 2020 | - |
dc.identifier.issn | 0251-4184 | - |
dc.identifier.uri | https://dspace.ctu.edu.vn/jspui/handle/123456789/100890 | - |
dc.description.abstract | A posteriori residual and hierarchical upper bounds for the error estimates are proved when solving the hypersingular integral equation on the unit sphere by using the Galerkin method with spherical splines. Based on these a posteriori error estimates, adaptive mesh refining procedures are used to reduce complexity and computational cost of the discrete problems. Numerical experiments illustrate our theoretical results. | vi_VN |
dc.language.iso | en | vi_VN |
dc.relation.ispartofseries | Acta mathematica Vietnamica journal;Vol.45, No.03 .- P.661-692 | - |
dc.subject | Hypersingular integral equation | vi_VN |
dc.subject | Spherical spline | vi_VN |
dc.subject | A posteriori error estimate | vi_VN |
dc.subject | Adaptivity | vi_VN |
dc.title | A posteriori error estimates for hypersingular integral equation on spheres with spherical splines | vi_VN |
dc.type | Article | vi_VN |
Appears in Collections: | Acta Mathematica Vietnamica |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
_file_ Restricted Access | 4.85 MB | Adobe PDF | ||
Your IP: 3.147.82.22 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.