Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/10749
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorNguyễn, Đình Hóa-
dc.date.accessioned2019-08-05T03:14:30Z-
dc.date.available2019-08-05T03:14:30Z-
dc.date.issued2018-
dc.identifier.issn2525-2224-
dc.identifier.urihttp://dspace.ctu.edu.vn/jspui/handle/123456789/10749-
dc.description.abstractThis paper presents a new method for continous learning based on data transformation. The proposed approach is applicable where individual training datasets are separated and not sharable. This approach includes a long short term memory network combined with a pooling process. The data must be transformed to a new feature space such that it cannot be converted back to the originals, while it can still keep the same prediction performance. In this method, it is assumed that label data is sharable. The method is evaluated based on real data on permeability prediction. The experimental results show that this approach is sufficient for continous learning that is useful for combining the knowledge from different data sources.vi_VN
dc.language.isoenvi_VN
dc.relation.ispartofseriesTạp chí Khoa học Công nghệ Thông tin và Truyền thông;Số 01+02 .- Tr.24-28-
dc.subjectKnowledge combinationvi_VN
dc.subjectData transformationvi_VN
dc.subjectContinous learningvi_VN
dc.subjectNeural networkvi_VN
dc.subjectEstimationvi_VN
dc.titleA new approach for continous Learningvi_VN
dc.typeArticlevi_VN
Bộ sưu tập: Khoa học Công nghệ Thông tin và Truyền thông

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_3.08 MBAdobe PDFXem
Your IP: 216.73.216.119


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.