Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://dspace.ctu.edu.vn/jspui/handle/123456789/107649
Nhan đề: | Tối ưu hóa độ chính xác dự đoán kết cấu BTCT bị ăn mòn dựa trên so sánh các mô hình trí tuệ nhân tạo = Optimizing the prediction accuracy of corroded reinforced concrete structures based on a comparison of artificial intelligence models |
Tác giả: | Vương, Hoàng Thạch Cao, Nữ Kim Anh Nguyễn, Thanh Hưng |
Từ khoá: | Học máy Trí tuệ nhân tạo Ăn mòn Cường độ nén Bê tông |
Năm xuất bản: | 2024 |
Tùng thư/Số báo cáo: | Tạp chí Xây dựng;Số 673 .- Tr.106-109 |
Tóm tắt: | Ăn mòn ảnh hưởng đáng kể đến độ bền của kết cấu bê tông cốt thép (BTCT) trong các tòa nhà. Nghiên cứu này đánh giá các mô hình dự đoán và tập hợp để dự đoán khả năng chịu lực của kết cấu BTCT bị ăn mòn, sử dụng các kỹ thuật như máy hỗ trợ vectơ (SVMs), mạng nơ-ron nhân tạo (ANNs), hồi quy tuyến tính (LR) và hồi quy tuyến tính tổng quát (GENLIN) cũng như các mô hình tập hợp kết hợp các phương pháp này. Sử dụng 100 bộ dữ liệu từ các tòa nhà dân cư tại Thành phố Hồ Chí Minh, các mô hình đã được thử nghiệm, với mô hình (ANNs) và (LR) đạt được độ chính xác dự đoán cao nhất là 98% về khả năng chịu lực của kết cấu BTCT bị ăn mòn. Những mô hình này tỏ ra hiệu quả trong việc dự đoán sớm và chính xác về độ bền của kết cấu, rất quan trọng cho việc lập kế hoạch bảo trì kịp thời. |
Định danh: | https://dspace.ctu.edu.vn/jspui/handle/123456789/107649 |
ISSN: | 2734-9888 |
Bộ sưu tập: | Xây dựng |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
_file_ Giới hạn truy cập | 2.71 MB | Adobe PDF | ||
Your IP: 18.116.37.31 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.