Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/109093
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.advisorNguyễn, Thái Nghe-
dc.contributor.authorNguyễn, Thanh Bằng-
dc.date.accessioned2024-12-11T03:35:46Z-
dc.date.available2024-12-11T03:35:46Z-
dc.date.issued2022-
dc.identifier.otherB1805617-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/109093-
dc.description41 Trvi_VN
dc.description.abstractThe use of masks in society is still a challenge. According to my observation, In US, for example, there are residents who are reluctant to use masks. Several reasons are the people’s health condition, misinformation and misinterpretation, politics, beliefs, mental health conditions and herd immunity. Another thing that becomes a challenge is that people are getting tired of using masks. Another challenge is the limited authorities’ personnel which resulted the monitoring of masks usage becomes less and less effective. To overcome such problem of ineffective monitoring, this theies proposes a method to detect face mask through image that can be produced by cameras or image files. To detect, I use and compare the method using classification method called as MobileNetV2, ResNet50V2, and Inception-V3 ain deciding whether a face image wears a mask or not. After 20 epochs, the level of training accuracy and validation accuracy reached 99% but when test in special case correct accuracy reached 73.335% In this study, I compared several pre-trained artificial neural methods in comparing the accuracy of each method suitable for detecting the use of mask. I will start with the systematics of writing by introducing the dataset and methods used in the augmentation process to increase the information from the image to be studied. Then, I will discuss about the transfer learning method using the MobileNetV2 algorithm, compared with ResNet50V2, and Inception-V3 to be combined with facial image recognition model called Caffe Model. All in all, I will discuss the results and discuss the performance of each transfer learning method as well as program implementation.vi_VN
dc.language.isoenvi_VN
dc.publisherTrường Đại Học Cần Thơvi_VN
dc.subjectCÔNG NGHỆ THÔNG TIN - CHẤT LƯỢNG CAOvi_VN
dc.titleWEARING MASK DETECTION SYSTEM FOR STUDENTSvi_VN
dc.title.alternativeHỆ THỐNG NHẬN DẠNG SINH VIÊN ĐEO KHẨU TRANGvi_VN
dc.typeThesisvi_VN
Bộ sưu tập: Trường Công nghệ Thông tin & Truyền thông

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
1.61 MBAdobe PDF
Your IP: 216.73.216.166


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.