Please use this identifier to cite or link to this item: https://dspace.ctu.edu.vn/jspui/handle/123456789/109141
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorTrương, Minh Thái-
dc.contributor.authorHồ, Minh Nhựt-
dc.date.accessioned2024-12-12T07:23:01Z-
dc.date.available2024-12-12T07:23:01Z-
dc.date.issued2024-
dc.identifier.otherB2005889-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/109141-
dc.description65 Trvi_VN
dc.description.abstractThe Normalized Difference Vegetation Index (NDVI) is a key metric for assessing vegetation health, derived from the red and near-infrared bands of optical satellite imagery. However, clouds frequently obstruct optical observations, preventing the calculation of NDVI in cloud-covered areas. Radar data, such as the VV (vertical transmit, vertical receive) and VH (vertical transmit, horizontal receive) polarizations from Sentinel-1, can penetrate cloud cover, offering valuable surface information that can be used to estimate NDVI in these obstructed regions. This project addresses the challenge of estimating NDVI for cloud-covered pixels in satellite imagery using machine learning regression techniques. By combining radar backscatter data (VV, VH) from Sentinel-1 with optical NDVI from cloud-free Sentinel-2 imagery, various regression models: Multiple Linear Regression, Gradient Boosting, Random Forest Regressor, KNN Regressor are applied to predict NDVI for cloud-obscured areas. The project leverages satellite image data from the Open Data Cube (ODC) platform under the EASI CSIRO Asia project, taking advantage of multi-sensor data integration. To ensure accurate predictions, the VV and VH radar data are resampled and aligned with NDVI values calculated from cloud-free Sentinel-2 imagery, forming the training dataset for the machine learning models.vi_VN
dc.language.isoenvi_VN
dc.publisherTrường Đại Học Cần Thơvi_VN
dc.subjectCÔNG NGHỆ THÔNG TIN - CHẤT LƯỢNG CAOvi_VN
dc.titleAPPLY MACHINE LEARNING TO LAND USE TRANSITION INVENTORY USING SENTINEL-1 AND SENTINEL-2vi_VN
dc.title.alternativeỨNG DỤNG MÁY HỌC VÀO KIỂM KÊ CHUYỂN ĐỔI MỤC ĐÍCH SỬ DỤNG ĐẤT SỬ DỤNG DỮ LIỆU SENTINEL-1 VÀ SENTINEL-2vi_VN
dc.typeThesisvi_VN
Appears in Collections:Trường Công nghệ Thông tin & Truyền thông

Files in This Item:
File Description SizeFormat 
_file_
  Restricted Access
1.98 MBAdobe PDF
Your IP: 52.15.233.83


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.