Please use this identifier to cite or link to this item:
https://dspace.ctu.edu.vn/jspui/handle/123456789/109141
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Trương, Minh Thái | - |
dc.contributor.author | Hồ, Minh Nhựt | - |
dc.date.accessioned | 2024-12-12T07:23:01Z | - |
dc.date.available | 2024-12-12T07:23:01Z | - |
dc.date.issued | 2024 | - |
dc.identifier.other | B2005889 | - |
dc.identifier.uri | https://dspace.ctu.edu.vn/jspui/handle/123456789/109141 | - |
dc.description | 65 Tr | vi_VN |
dc.description.abstract | The Normalized Difference Vegetation Index (NDVI) is a key metric for assessing vegetation health, derived from the red and near-infrared bands of optical satellite imagery. However, clouds frequently obstruct optical observations, preventing the calculation of NDVI in cloud-covered areas. Radar data, such as the VV (vertical transmit, vertical receive) and VH (vertical transmit, horizontal receive) polarizations from Sentinel-1, can penetrate cloud cover, offering valuable surface information that can be used to estimate NDVI in these obstructed regions. This project addresses the challenge of estimating NDVI for cloud-covered pixels in satellite imagery using machine learning regression techniques. By combining radar backscatter data (VV, VH) from Sentinel-1 with optical NDVI from cloud-free Sentinel-2 imagery, various regression models: Multiple Linear Regression, Gradient Boosting, Random Forest Regressor, KNN Regressor are applied to predict NDVI for cloud-obscured areas. The project leverages satellite image data from the Open Data Cube (ODC) platform under the EASI CSIRO Asia project, taking advantage of multi-sensor data integration. To ensure accurate predictions, the VV and VH radar data are resampled and aligned with NDVI values calculated from cloud-free Sentinel-2 imagery, forming the training dataset for the machine learning models. | vi_VN |
dc.language.iso | en | vi_VN |
dc.publisher | Trường Đại Học Cần Thơ | vi_VN |
dc.subject | CÔNG NGHỆ THÔNG TIN - CHẤT LƯỢNG CAO | vi_VN |
dc.title | APPLY MACHINE LEARNING TO LAND USE TRANSITION INVENTORY USING SENTINEL-1 AND SENTINEL-2 | vi_VN |
dc.title.alternative | ỨNG DỤNG MÁY HỌC VÀO KIỂM KÊ CHUYỂN ĐỔI MỤC ĐÍCH SỬ DỤNG ĐẤT SỬ DỤNG DỮ LIỆU SENTINEL-1 VÀ SENTINEL-2 | vi_VN |
dc.type | Thesis | vi_VN |
Appears in Collections: | Trường Công nghệ Thông tin & Truyền thông |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
_file_ Restricted Access | 1.98 MB | Adobe PDF | ||
Your IP: 52.15.233.83 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.