Please use this identifier to cite or link to this item: https://dspace.ctu.edu.vn/jspui/handle/123456789/109379
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorTrương, Minh Thái-
dc.contributor.authorNguyễn, Thị Diễm My-
dc.date.accessioned2024-12-19T07:57:03Z-
dc.date.available2024-12-19T07:57:03Z-
dc.date.issued2024-
dc.identifier.otherB2014996-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/109379-
dc.description67 Trvi_VN
dc.description.abstractThis study aims to address the challenge of land use classification and monitoring changes over time to support sustainable land resource management in Thuan Hoa commune, Soc Trang province. Utilizing the Random Forest model and satellite imagery data from Sentinel-1 and Sentinel-2, accessed through the Open Data Cube platform under the EASI CSIRO Asia project, combined with ground-truth data, the study analyzes and compares classification results with the 2022 land inventory map. The methodology involves overlaying RF-generated classification maps with reference data in shapefile format to evaluate land use changes. Results demonstrate the RF model's effectiveness in accurately classifying various land use types. These changes are visualized clearly through GIS maps, providing valuable insights into land use trends within the region. This research highlights the potential of integrating machine learning with remote sensing technology for land use classification and monitoring. The findings contribute not only to advancing scientific understanding but also to practical applications in land resource management, supporting strategic planning for sustainable development, particularly in the context of climate change and growing urbanization pressures.vi_VN
dc.language.isoenvi_VN
dc.publisherTrường Đại Học Cần Thơvi_VN
dc.subjectCÔNG NGHỆ THÔNG TIN - CHẤT LƯỢNG CAOvi_VN
dc.titleAPPLYING MACHINE LEARNING TO LAND USE TRANSITION INVENTORY USING SENTINEL-1 AND SENTINEL-2 DATA (CLASSIFYING LAND TRANSITION PURPOSES)vi_VN
dc.title.alternativeÁP DỤNG MÁY HỌC VÀO KIỂM KÊ MỤC ĐÍCH SỬ DỤNG ĐẤT SỬ DỤNG DỮ LIỆU SENTINEL 1 VÀ SENTINEL 2 (PHÂN HỆ PHÂN LOẠI MỤC ĐÍCH SỬ DỤNG ĐẤT)vi_VN
dc.typeThesisvi_VN
Appears in Collections:Trường Công nghệ Thông tin & Truyền thông

Files in This Item:
File Description SizeFormat 
_file_
  Restricted Access
2.66 MBAdobe PDF
Your IP: 3.139.104.140


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.