Please use this identifier to cite or link to this item: https://dspace.ctu.edu.vn/jspui/handle/123456789/109459
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorLâm, Nhựt Khang-
dc.contributor.authorNguyễn, Lý Hồng Mi-
dc.date.accessioned2024-12-23T01:51:01Z-
dc.date.available2024-12-23T01:51:01Z-
dc.date.issued2024-
dc.identifier.otherB2005883-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/109459-
dc.description49 Trvi_VN
dc.description.abstractIn this thesis, we propose a method for detecting Vietnamese traffic signs using YOLO, specifically the YOLOv10 model, which stands out for its lightweight structure and high accuracy. About the dataset, it contains 12,774 images spanning five classes that equivalent to five groups of Vietnamese traffic signs: Cam, Chi_dan, Hieu_lenh, Nguy_hiem, Phu. The dataset was divided into 86% for training and 7% each for validation and test. The YOLOv10 model achieved a mAP of 0.976, outperforming other models and demonstrating its suitability for real-time mobile applications. The resulting mobile application offers three key features: Images available in the phone’s library, photo capture and live detection, providing users with an efficient tool for identifying Vietnamese traffic signs.vi_VN
dc.language.isoenvi_VN
dc.publisherTrường Đại Học Cần Thơvi_VN
dc.subjectCÔNG NGHỆ THÔNG TIN - CHẤT LƯỢNG CAOvi_VN
dc.titleBUILDING A MOBILE APPLICATION FOR TRAFFIC SIGN DETECTION USING YOLOvi_VN
dc.title.alternativeXÂY DỰNG ỨNG DỤNG DI ĐỘNG PHÁT HIỆN BIỂN BÁO GIAO THÔNG SỬ DỤNG MÔ HÌNH YOLOvi_VN
dc.typeThesisvi_VN
Appears in Collections:Trường Công nghệ Thông tin & Truyền thông

Files in This Item:
File Description SizeFormat 
_file_
  Restricted Access
2.63 MBAdobe PDF
Your IP: 3.143.7.53


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.