Please use this identifier to cite or link to this item:
https://dspace.ctu.edu.vn/jspui/handle/123456789/109467
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Lâm, Nhựt Khang | - |
dc.contributor.author | Phạm, Thành Hưng | - |
dc.date.accessioned | 2024-12-23T02:27:12Z | - |
dc.date.available | 2024-12-23T02:27:12Z | - |
dc.date.issued | 2024 | - |
dc.identifier.other | B2014918 | - |
dc.identifier.uri | https://dspace.ctu.edu.vn/jspui/handle/123456789/109467 | - |
dc.description | 46 Tr | vi_VN |
dc.description.abstract | In this thesis, we propose a method for detecting diseases on tomato leaves using deep learning, focusing on the YOLOv10-nano model due to its lightweight structure and high accuracy. A dataset of 12,008 images, consisting five classes which includes four diseases: Early blight, late blight, leaf mold, yellow leaf curl virus, along with one class representing healthy tomato leaves. The dataset was then utilized and divided into 70% for training, 20% for validation, and 10 % for testing. The YOLOv10-nano model achieved a mAP of 0.936, outweigh other models and demonstrating its suitability for real-time mobile applications. The resulting mobile application offers two key features: image-based recognition and live detection, providing a user-friendly tool for identifying tomato leaf diseases. | vi_VN |
dc.language.iso | en | vi_VN |
dc.publisher | Trường Đại Học Cần Thơ | vi_VN |
dc.subject | CÔNG NGHỆ THÔNG TIN - CHẤT LƯỢNG CAO | vi_VN |
dc.title | DEVELOPING A MOBILE APPLICATION FOR IDENTIFYING DISEASES ON TOMATO LEAVES. | vi_VN |
dc.title.alternative | PHÁT TRIỂN ỨNG DỤNG DI ĐỘNG NHẬN DIỆN BỆNH TRÊN LÁ CÂY CÀ CHUA. | vi_VN |
dc.type | Thesis | vi_VN |
Appears in Collections: | Trường Công nghệ Thông tin & Truyền thông |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
_file_ Restricted Access | 2.33 MB | Adobe PDF | ||
Your IP: 3.144.104.123 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.