Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://dspace.ctu.edu.vn/jspui/handle/123456789/109539
Nhan đề: | A data-centric deep learning method for pulmonary nodule detection |
Tác giả: | Nguyen, Chi Cuong Nguyen, Long Giang Tran, Giang Son |
Từ khoá: | Data-centric learning Deep learning Pulmonary nodule detection |
Năm xuất bản: | 2022 |
Tùng thư/Số báo cáo: | Journal of Computer Science and Cybernetics;Vol.38, No.03 .- P.229-243 |
Tóm tắt: | Lung cancer is one of the most serious cancer-related diseases in Vietnam and all over the world. Early detection of lung nodules can help to increase the survival rate of lung cancer patients. Computer-aided diagnosis (CAD) systems are proposed in the literature for early detection of lung nodules. However, most of the current CAD systems are based on the building of high-quality machine learning models for a fixed dataset rather than taking into account the dataset properties which are very important for the lung cancer diagnosis. In this paper, we follow the direction of data-centric approach for lung nodule detection by proposing a data-centric method to improve detection performance of lung nodules on CT scans. Our method takes into account the dataset-specific features (nodule sizes and aspect ratios) to train detection models as well as add more training data from local Vietnamese hospital. We experiment our method on the three widely used object detection networks (Faster R-CNN, YOLOv3 and RetinaNet). The experimental results show that our proposed method improves detection sensitivity of these object detection models up to 4.24%. |
Định danh: | https://dspace.ctu.edu.vn/jspui/handle/123456789/109539 |
ISSN: | 1813-9663 |
Bộ sưu tập: | Tin học và Điều khiển học (Journal of Computer Science and Cybernetics) |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
_file_ Giới hạn truy cập | 6.14 MB | Adobe PDF | ||
Your IP: 18.227.183.161 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.