Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://dspace.ctu.edu.vn/jspui/handle/123456789/109649
Nhan đề: | GIẢI PHÁP PHÁT HIỆN TẤN CÔNG TỪ CHỐI DỊCH VỤ PHÂN TÁN (DDOS) SỬ DỤNG KỸ THUẬT HỌC SÂU |
Nhan đề khác: | DDOS ATTACK DETECTION USING DEEP LEARNING TECHNIQUES |
Tác giả: | Phan, Thượng Cang Bùi, Hữu Tánh |
Từ khoá: | TRUYỀN THÔNG VÀ MẠNG MÁY TÍNH |
Năm xuất bản: | 2024 |
Nhà xuất bản: | Trường Đại Học Cần Thơ |
Tóm tắt: | Luận văn nhằm nghiên cứu và phát triển một hệ thống phát hiện tấn công từ chối dịch vụ phân tán (DDoS) hiệu quả, sử dụng các mô hình học sâu (DL). Cụ thể, luận văn tập trung vào việc xây dựng các mô hình học sâu (LSTM, CNN, RNN, GRU, CNN-LSTM, Transformer ) và huấn luyện chúng trên bộ dữ liệu CICDDoS2019, một bộ dữ liệu chuẩn trong nghiên cứu phát hiện tấn công DDoS. Các mô hình này sau đó sẽ được đánh giá và so sánh về độ chính xác, độ nhạy (Recall), độ đặc hiệu (Specificity), và các chỉ số hiệu suất khác. Kết quả thực nghiệm cho thấy các mô hình học sâu như GRU, LSTM có khả năng phát hiện tấn công DDoS với độ chính xác cao. Các mô hình học sâu này tự động học từ dữ liệu mạng và có thể phát hiện các mẫu tấn công phức tạp, mang lại hiệu quả bảo mật cao hơn so với các phương pháp truyền thống. Một điểm đặc biệt là việc sử dụng các kỹ thuật tăng cường dữ liệu như ROS, SMOTE, GAN giúp cải thiện độ chính xác trong việc phát hiện các tấn công DDoS, đặc biệt trong tình huống mất cân bằng lớp (Class Imbalance). Kết quả cho thấy các mô hình học sâu có khả năng phát hiện tấn công DDoS với độ chính xác cao, vượt trội hơn các phương pháp truyền thống, và có thể được ứng dụng hiệu quả trong hệ thống an ninh mạng. Cuối cùng, các mô hình trên sẽ được triển khai với hệ thống nhầm đưa ra cảnh báo khi phát hiện tấn công DDoS. |
Mô tả: | 108 Tr |
Định danh: | https://dspace.ctu.edu.vn/jspui/handle/123456789/109649 |
Bộ sưu tập: | Trường Công nghệ Thông tin & Truyền thông |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
_file_ Giới hạn truy cập | 3.95 MB | Adobe PDF | ||
Your IP: 3.142.174.8 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.