Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://dspace.ctu.edu.vn/jspui/handle/123456789/110445
Nhan đề: | REAL – TIME VIDEO GAME EVENTS DETECTION USING MACHINE LEARNING |
Nhan đề khác: | PHÁT HIỆN SỰ KIỆN TRONG TRÒ CHƠI ĐIỆN TỬ SỬ DỤNG MÁY HỌC |
Tác giả: | Thái, Minh Tuấn Nguyễn, Lê Khánh Toàn |
Từ khoá: | CÔNG NGHỆ THÔNG TIN - CHẤT LƯỢNG CAO |
Năm xuất bản: | 2024 |
Nhà xuất bản: | Trường Đại Học Cần Thơ |
Tóm tắt: | The gaming industry has evolved dramatically, with modern video games offering highly immersive and complex environments. Despite this progress, real-time detection and analysis of in-game events remain relatively untapped areas that could significantly enhance player experience and game development. Real-time detection and analysis of in-game events provide valuable insights that can drive dynamic gameplay adjustments, optimize game balance, and personalize content delivery. This thesis addresses the critical need for advanced analytics in gaming by exploring real-time video game event detection using machine learning techniques. By accurately identifying and classifying character statuses and enemy types in "Diablo II: Resurrected," the aim is to empower both developers and players with actionable data that enriches gameplay and supports informed decision-making. To achieve this, we leverage the YOLOv8 deep learning architecture, renowned for its efficiency in real-time object detection, to develop a custom-trained model capable of distinguishing character statuses within the game's dynamic environment. Systematic data collection and precise annotation of in-game screenshots allowed us to create a robust dataset aligned with significant game events. The model underwent rigorous training and fine-tuning, guided by evaluation metrics like precision, recall, and mean average precision (mAP), ensuring high detection accuracy and responsiveness. The results demonstrate the model's effectiveness, validating the suitability of YOLOv8 for complex real-time applications. This research contributes to the fields of machine learning and game AI by advancing real-time detection and classification capabilities in interactive virtual environments, underscoring the pivotal role of analytics in modern gaming. |
Mô tả: | 46 Tr |
Định danh: | https://dspace.ctu.edu.vn/jspui/handle/123456789/110445 |
Bộ sưu tập: | Trường Công nghệ Thông tin & Truyền thông |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
_file_ Giới hạn truy cập | 1.17 MB | Adobe PDF | ||
Your IP: 216.73.216.100 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.