Please use this identifier to cite or link to this item:
https://dspace.ctu.edu.vn/jspui/handle/123456789/110461
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Nguyễn, Thái Nghe | - |
dc.contributor.author | Mạc, Hồng Vũ | - |
dc.date.accessioned | 2025-01-11T07:30:33Z | - |
dc.date.available | 2025-01-11T07:30:33Z | - |
dc.date.issued | 2024 | - |
dc.identifier.other | B2013343 | - |
dc.identifier.uri | https://dspace.ctu.edu.vn/jspui/handle/123456789/110461 | - |
dc.description | 60 Tr | vi_VN |
dc.description.abstract | Developed an improved deep learning model based on CNN to recognize 9 common medicinal plants in Vietnam: aloevera, basil, bitter melon, daisy, garlic, ginger, lotus, mint, and rose. The model achieved an mAP score of 73.88% after training, demonstrating accurate recognition and localization of these objects. The model was deployed on Android smartphones. | vi_VN |
dc.language.iso | en | vi_VN |
dc.publisher | Trường Đại Học Cần Thơ | vi_VN |
dc.subject | CÔNG NGHỆ THÔNG TIN - CHẤT LƯỢNG CAO | vi_VN |
dc.title | MEDICINAL HERBS DETECTION SYSTEM | vi_VN |
dc.title.alternative | HỆ THỐNG NHẬN DẠNG CÁC LOẠI DƯỢC LIỆU | vi_VN |
dc.type | Thesis | vi_VN |
Appears in Collections: | Trường Công nghệ Thông tin & Truyền thông |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
_file_ Restricted Access | 3.17 MB | Adobe PDF | ||
Your IP: 216.73.216.100 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.