Please use this identifier to cite or link to this item: https://dspace.ctu.edu.vn/jspui/handle/123456789/110461
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorNguyễn, Thái Nghe-
dc.contributor.authorMạc, Hồng Vũ-
dc.date.accessioned2025-01-11T07:30:33Z-
dc.date.available2025-01-11T07:30:33Z-
dc.date.issued2024-
dc.identifier.otherB2013343-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/110461-
dc.description60 Trvi_VN
dc.description.abstractDeveloped an improved deep learning model based on CNN to recognize 9 common medicinal plants in Vietnam: aloevera, basil, bitter melon, daisy, garlic, ginger, lotus, mint, and rose. The model achieved an mAP score of 73.88% after training, demonstrating accurate recognition and localization of these objects. The model was deployed on Android smartphones.vi_VN
dc.language.isoenvi_VN
dc.publisherTrường Đại Học Cần Thơvi_VN
dc.subjectCÔNG NGHỆ THÔNG TIN - CHẤT LƯỢNG CAOvi_VN
dc.titleMEDICINAL HERBS DETECTION SYSTEMvi_VN
dc.title.alternativeHỆ THỐNG NHẬN DẠNG CÁC LOẠI DƯỢC LIỆUvi_VN
dc.typeThesisvi_VN
Appears in Collections:Trường Công nghệ Thông tin & Truyền thông

Files in This Item:
File Description SizeFormat 
_file_
  Restricted Access
3.17 MBAdobe PDF
Your IP: 216.73.216.100


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.