Please use this identifier to cite or link to this item: https://dspace.ctu.edu.vn/jspui/handle/123456789/110703
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorNguyễn, Thái Nghe-
dc.contributor.authorVũ, Nguyễn Anh Khôi-
dc.date.accessioned2025-02-03T07:44:12Z-
dc.date.available2025-02-03T07:44:12Z-
dc.date.issued2024-
dc.identifier.otherB2014990-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/110703-
dc.description54 Trvi_VN
dc.description.abstractBuilding a deep learning model for plant leaf disease detection. This study develops a plant disease detection system using the YOLOv5 deep learning model for real-time and accurate identification. Trained on a dataset of plant leaf images, the model achieved a mean average precision (mAP) of approximately 0.80 at IoU 0.50 and 0.65 at IoU 0.50-0.95, demonstrating its robustness and reliability. Data augmentation and hyperparameter optimization were applied to enhance performance across diverse image conditions. The results highlight YOLOv5's potential for effective disease detection in agriculture. Current work focuses deployment on website and window platforms, and exploring advanced models for improved accuracy and usability in practical scenarios."vi_VN
dc.language.isoenvi_VN
dc.publisherTrường Đại Học Cần Thơvi_VN
dc.subjectCÔNG NGHỆ THÔNG TIN - CHẤT LƯỢNG CAOvi_VN
dc.titleA TRAFFIC DENSITY ESTIMATION SYSTEMvi_VN
dc.title.alternativeHỆ THỐNG ƯỚC TÍNH MẬT ĐỘ GIAO THÔNGvi_VN
dc.typeThesisvi_VN
Appears in Collections:Trường Công nghệ Thông tin & Truyền thông

Files in This Item:
File Description SizeFormat 
_file_
  Restricted Access
7.89 MBAdobe PDF
Your IP: 18.188.93.255


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.