Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/112713
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorDo, Duy Thinh-
dc.contributor.authorVo, Thi Vy Phương-
dc.contributor.authorNguyen, Thị Thuy Trang-
dc.date.accessioned2025-03-17T06:23:16Z-
dc.date.available2025-03-17T06:23:16Z-
dc.date.issued2025-
dc.identifier.issn2734-9888-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/112713-
dc.description.abstractStreet spaces in Vietnam are primarily planned for residential land use functions. However, with the advancement of society, people increasingly tend to convert part or all of this function to serve various commercial and business purposes, leading to diversification in land use along the streets. This transformation has significantly impacted activities within urban spaces. This study develops a method to identify typical land use patterns along streets by applying Frequent Itemset Mining techniques. The results identified 10 different land use patterns along the streets of Da Nang. These land use combinations provide an important foundation for studies related to urban planning and management, while also supporting investment and business development. Moreover, the research proposes a reliable method that plays a crucial role in helping researchers identify typical land use patterns, contributing to further research as well as various practical applications.vi_VN
dc.language.isoenvi_VN
dc.relation.ispartofseriesTạp chí Xây dựng;Số 681 .- Tr.108-113-
dc.subjectStreet Spacevi_VN
dc.subjectLandusevi_VN
dc.subjectLanduse Patternvi_VN
dc.subjectData Miningvi_VN
dc.subjectFrequent itemsetsvi_VN
dc.titleIdentifying street landuse patterns using frequent Itemset mining = Nhận diện kiểu mẫu sử dụng đất đường phố thông qua ứng dụng thuật toán khai thác tập phổ biếnvi_VN
dc.typeArticlevi_VN
Bộ sưu tập: Xây dựng

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
8.08 MBAdobe PDF
Your IP: 216.73.216.119


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.