Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/11666
Nhan đề: An Empirical Study on Sentiment Analysis for Vietnamese Comparative Sentences
Tác giả: Ngo, Xuan Bach
Từ khoá: Sentiment Analysis
Opinion Mining
Comparative Sentences
Support Vector Machines
Conditional Random Fields
Năm xuất bản: 2018
Tùng thư/Số báo cáo: Tạp chí Khoa học Công nghệ Thông tin và Truyền thông;Số 03 .- Tr.44-52
Tóm tắt: This paper presents an empirical study on sentiment analysis for Vietnamese language focusing on comparative sentences, which have different structures compared with narrative or question sentences. Given a set of evaluative Vietnamese documents, the goal of the task consists of (1) identifying comparative sentences in the documents; (2) recognition of relations in the identilied sentences; and (3) identifying the preferred entity in the comparative sentences if any. A relation describes a comparison of two entities or two sets of entities on some teatures or aspects in the sentence. Such information is needed for sentiment analysis in comparative sentences, which is very useful not only for customers in choosing products but also for manufacturers in producing and marketing. We present a general framework to solve the task in which we formulate the first and the third subtasks, i.e. identifying comparative sentences and identifying the preferred entity, as a classification problem, and the second subtask. i.e. recognition or relations, as a sequence learning problem. We introduce a new corpus for the lask in Vietnamese and conduct a series of experiments on that corpus to investigate the task in both linguistic and modeling aspects. Our work provides promising results for further research on this interesting task.
Định danh: http://dspace.ctu.edu.vn/jspui/handle/123456789/11666
ISSN: 2525-2224
Bộ sưu tập: Khoa học Công nghệ Thông tin và Truyền thông

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_4.92 MBAdobe PDFXem
Your IP: 52.15.196.4


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.