Please use this identifier to cite or link to this item: https://dspace.ctu.edu.vn/jspui/handle/123456789/116676
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTrần, Mạnh Hà-
dc.contributor.authorTrần, Ngọc Mai-
dc.date.accessioned2025-06-04T13:43:04Z-
dc.date.available2025-06-04T13:43:04Z-
dc.date.issued2025-
dc.identifier.issn1859-3666-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/116676-
dc.description.abstractNghiên cứu đánh giá hiệu quả của việc sử dụng dữ liệu tần suất cao và kỹ thuật học máy trong việc nâng cao hiệu quả dự báo biến động. Sử dụng dữ liệu với tần suất 5 phút của hợp đồng tương lai dầu thô WTI với 182,874 quan sát và so sánh kết quả dự báo ba mô hình - GARCH(1,1) sử dụng dữ liệu tần suất thấp, HAR-RV với dữ liệu tần suất cao, và ML-HAR-RV tích hợp học máy, nhóm tác giả chỉ ra rằng việc sử dụng dữ liệu tần suất cao, đặc biệt khi kết hợp với học máy, sẽ mang lại kết quả vượt trội so với các mô hình dự báo thông thường. Bên cạnh đó, kết quả nghiên cứu cũng cho thấy việc sử dụng một năm dữ liệu lịch sử để đào tạo mô hình mang lại kết quả dự báo chính xác hơn so với việc sử dụng khung dữ liệu lịch sử trong hai năm. Kết quả nghiên cứu sẽ có nhiều ý nghĩa đối với các nhà quản lý danh mục đầu tư cũng như các cơ quan quản lý trong việc nghiên cứu và dự báo biến động của các tài sản tài chính.vi_VN
dc.language.isovivi_VN
dc.relation.ispartofseriesTạp chí Khoa học Thương mại (Journal of Trade science);Số 200 .- Tr.15-25-
dc.subjectDữ liệu tần suất caovi_VN
dc.subjectHọc máyvi_VN
dc.subjectBiến động thực tếvi_VN
dc.titleỨng dụng mô hình dữ liệu tần suất cao kết hợp học máy nhằm nâng cao hiệu quả dự báo: Nghiên cứu với hợp đồng tương lai dầu thô WTIvi_VN
dc.typeArticlevi_VN
Appears in Collections:Khoa học Thương mại (Journal of Trade science)

Files in This Item:
File Description SizeFormat 
_file_
  Restricted Access
6.82 MBAdobe PDF
Your IP: 216.73.216.129


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.