Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/119561
Nhan đề: CLW_SUMO: A hybrid deep learning model for predicting protein SUMOylation sites
Tác giả: Tran, Thi Xuan
Tran, Thi Thu Huong
Le, Nguyen Quoc Khanh
Nguyen, Van Nui
Từ khoá: SUMOylation
Prediction
Convolutional neural networks
Long short-term memory
Natural language processing
Word2Vec
Năm xuất bản: 2024
Tùng thư/Số báo cáo: Journal of Computer Science and Cybernetics;Vol.40, No.04 .- P.315-325
Tóm tắt: Protein SUMOylation is one of the most important post-translational modifications in Eukaryotes species and plays significant roles in many biological processes. The mechanism underlined the SUMOylation process will be an important cause leading to many common serious diseases, such as breast cancer, cardiac, Parkinson’s, Alzheimer’s disease, etc. Due to the very important roles regulated by SUMOylation, the demand for an in-depth understanding of SUMOylation and its mechanism is currently a hot topic that interests many scientists. In this study, we propose a novel approach, called CLW-SUMO, for predicting SUMOylation sites using a hybrid deep learning model that combines convolutional neural networks (CNN) and long short-term memory (LSTM), using Word2Vec as the word embedding technique. The 10-fold cross-validation demonstrates that our proposed model achieves the best performance with an accuracy of 82.33%, MCC of 0.589 and AUC of 0.829. Besides, the independent testing also shows that our proposed model obtains the highest performance, reaching an accuracy of 90.03%, MCC of 0.773 and AUC of 0.889. Furthermore, when compared to several existing predictors of SUMOylation using an independent dataset, our proposed model exhibits the highest performance with an ACC value of 90.03% and an MCC value of 0.773. We hope that our findings will provide effective suggestions and greatly help researchers in their studies related to protein SUMOylation identification.
Định danh: https://dspace.ctu.edu.vn/jspui/handle/123456789/119561
ISSN: 1813-9663
Bộ sưu tập: Tin học và Điều khiển học (Journal of Computer Science and Cybernetics)

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
1.14 MBAdobe PDF
Your IP: 216.73.216.121


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.