Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/119561
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorTran, Thi Xuan-
dc.contributor.authorTran, Thi Thu Huong-
dc.contributor.authorLe, Nguyen Quoc Khanh-
dc.contributor.authorNguyen, Van Nui-
dc.date.accessioned2025-07-31T01:59:02Z-
dc.date.available2025-07-31T01:59:02Z-
dc.date.issued2024-
dc.identifier.issn1813-9663-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/119561-
dc.description.abstractProtein SUMOylation is one of the most important post-translational modifications in Eukaryotes species and plays significant roles in many biological processes. The mechanism underlined the SUMOylation process will be an important cause leading to many common serious diseases, such as breast cancer, cardiac, Parkinson’s, Alzheimer’s disease, etc. Due to the very important roles regulated by SUMOylation, the demand for an in-depth understanding of SUMOylation and its mechanism is currently a hot topic that interests many scientists. In this study, we propose a novel approach, called CLW-SUMO, for predicting SUMOylation sites using a hybrid deep learning model that combines convolutional neural networks (CNN) and long short-term memory (LSTM), using Word2Vec as the word embedding technique. The 10-fold cross-validation demonstrates that our proposed model achieves the best performance with an accuracy of 82.33%, MCC of 0.589 and AUC of 0.829. Besides, the independent testing also shows that our proposed model obtains the highest performance, reaching an accuracy of 90.03%, MCC of 0.773 and AUC of 0.889. Furthermore, when compared to several existing predictors of SUMOylation using an independent dataset, our proposed model exhibits the highest performance with an ACC value of 90.03% and an MCC value of 0.773. We hope that our findings will provide effective suggestions and greatly help researchers in their studies related to protein SUMOylation identification.vi_VN
dc.language.isoenvi_VN
dc.relation.ispartofseriesJournal of Computer Science and Cybernetics;Vol.40, No.04 .- P.315-325-
dc.subjectSUMOylationvi_VN
dc.subjectPredictionvi_VN
dc.subjectConvolutional neural networksvi_VN
dc.subjectLong short-term memoryvi_VN
dc.subjectNatural language processingvi_VN
dc.subjectWord2Vecvi_VN
dc.titleCLW_SUMO: A hybrid deep learning model for predicting protein SUMOylation sitesvi_VN
dc.typeArticlevi_VN
Bộ sưu tập: Tin học và Điều khiển học (Journal of Computer Science and Cybernetics)

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
1.14 MBAdobe PDF
Your IP: 216.73.216.215


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.