Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/119573
Nhan đề: Spatio-temporal graph learning with epidemiological factors for HIV epidemic short-term prediction
Tác giả: Pham, Thanh Dat
Nguyen, Van Duong
Tran, Tan Thanh
Nguyen, Viet Anh
Từ khoá: Epidemic forecasting
HIV forecasting
Spatio-temporal graph learning
Năm xuất bản: 2024
Tùng thư/Số báo cáo: Journal of Computer Science and Cybernetics;Vol.40, No.04 .- P.363-380
Tóm tắt: HIV/AIDS is a major epidemic in the 21st century, with high mortality rates and no effective preventive vaccine. It significantly impacts the economy, mental well-being and health systems and shortens national lifespans. Early detection helps reduce transmission and allocate medical resources effectively. However, predicting outbreaks remains challenging due to the influence of temporal, spatial and epidemiological factors, which complicate the spread of the disease across regions and pose difficulties for predictive models. Very few studies use deep learning models to tackle the HIV epidemic. To address this gap, we suggest using a graph data structure to simulate HIV transmission between neighboring areas and integrate epidemiological factors into this framework. We develop a spatio-temporal graph neural network model to predict short-term infection trends. This model incorporates important factors from HIV modeling, including temporal dynamics, geographic regions, and epidemiological variables such as age groups, career groups, gender groups, risk population groups, and transmission routes within an area. Our approach uses self-attention in the graph architecture to gather node-level information across the infection graph at each step during time series processing. We employ a GRU mechanism to update the graph information over time, allowing for a comprehensive evaluation of transmission probabilities between regions and improving predictive accuracy. Our proposed model was tested on HIV datasets from districts in Ho Chi Minh City, Viet Nam, and demonstrated superior performance compared to existing spatio-temporal models applied to the same dataset.
Định danh: https://dspace.ctu.edu.vn/jspui/handle/123456789/119573
ISSN: 1813-9663
Bộ sưu tập: Tin học và Điều khiển học (Journal of Computer Science and Cybernetics)

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
1.1 MBAdobe PDF
Your IP: 216.73.216.220


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.