Please use this identifier to cite or link to this item: https://dspace.ctu.edu.vn/jspui/handle/123456789/124289
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorLâm, Nhựt Khang-
dc.contributor.authorLê, Xuân Thành-
dc.date.accessioned2026-01-12T08:29:17Z-
dc.date.available2026-01-12T08:29:17Z-
dc.date.issued2025-
dc.identifier.otherB2111952-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/124289-
dc.description59 Trvi_VN
dc.description.abstractThis study addresses the problem of detecting Deepfake images using the TruFor model, a forensic deep-learning architecture designed to analyze both semantic content and image-level manipulation traces. The methodology involves training and evaluating TruFor on a curated dataset of authentic and manipulated images, extracting noise residuals and computational artefacts to distinguish real from fake. Experimental results demonstrate that TruFor achieves high detection performance, with a pixel accuracy of 96.64% and a mean Average Precision (mAP) of 87.79%, indicating strong robustness and generalization across diverse manipulation types. These results confirm that combining semantic features with noise-based forensic cues significantly enhances Deepfake detection effectiveness.vi_VN
dc.language.isoenvi_VN
dc.publisherTrường Đại Học Cần Thơvi_VN
dc.subjectCÔNG NGHỆ THÔNG TIN - CHẤT LƯỢNG CAOvi_VN
dc.titleAPPLYING TRUFOR IN DEEPFAKE IMAGE DETECTION TASKvi_VN
dc.title.alternativeỨNG DỤNG MÔ HÌNH TRUFOR VÀO BÀI TOÁN PHÁT HIỆN HÌNH ẢNH DEEPFAKEvi_VN
dc.typeThesisvi_VN
Appears in Collections:Trường Công nghệ Thông tin & Truyền thông

Files in This Item:
File Description SizeFormat 
_file_
  Restricted Access
2.12 MBAdobe PDF
Your IP: 216.73.216.162


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.