Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/124599
Nhan đề: Spatiotemporal data analysis using deep learning models: A case study with drifting buoy data
Tác giả: Nguyen, Gia Trong
Nguyen, Xuan Hien
Vu, Duc Manh
Tran, Duc Vinh
Từ khoá: Drifting buoy data
Artificial intelligence
Deep learning
Time series data
Năm xuất bản: 2025
Tùng thư/Số báo cáo: Tạp chí Khí tượng Thủy Văn (Journal of Hydro-Meteorology);No.22 .- P.01-09
Tóm tắt: Building or predicting the trajectory of drifting objects is significant in maritime studies and search and rescue operations. The trajectory of a drifting object can be determined using traditional tools based on marine dynamic models or through artificial intelligence models. Using drifting buoy data collected between December 19 and December 28, 2003, the research team employed a CNN (Conv1D) model for analysis. The results indicate that when using the Adam optimizer, the Huber loss function, and 256 filters in the hidden layer, the model performance parameters were RMSE = 0.04004, MAE = 0.032304 degrees, and R² = 98%. When applying the SGD optimizer and the mean squared error (MSE) loss function, both RMSE and MAE values decreased by up to four times compared to the previous configuration, while the R² value reached 99.9% with 64 filters in the hidden layer. Increasing the number of filters to 128 improved the CNN (Conv1D) model performance by approximately 20%, with RMSE = 0.007863 degrees and MAE = 0.006653 degrees. The R² value approached 100%, indicating that the model is highly suitable for predicting drifting buoy trajectories. Increasing the number of filters from 128 to 256 did not further improve performance, suggesting that 128 filters represent the optimal configuration. However, the RMSE value remains relatively large (0.87 km), possibly due to the limited input dataset. Future studies should consider larger datasets to enhance prediction accuracy.
Định danh: https://dspace.ctu.edu.vn/jspui/handle/123456789/124599
ISSN: 2525-2208
Bộ sưu tập: Khí tượng Thủy văn

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
407.96 kBAdobe PDF
Your IP: 216.73.216.162


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.