Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://dspace.ctu.edu.vn/jspui/handle/123456789/12502
Nhan đề: | A Differential Evolution-Based Clustering for Probability Density Functions |
Tác giả: | HO, KIEU DIEM Võ, Văn Tài NGUYEN, TRANG THAO NGUYEN, THOI TRUNG VO, DUY TRUNG |
Năm xuất bản: | 2018 |
Tùng thư/Số báo cáo: | IEEE Access;6 .- p. 41325-41336 |
Tóm tắt: | Clustering for probability density functions (CDFs) has recently emerged as a new interest technique in statistical pattern recognition because of its potential in various practical issues. For solving the CDF problems, evolutionary techniques which are successfully applied in clustering for discrete elements have not been studied much in CDF. Therefore, this paper presents for the first time an application of the differential evolution (DE) algorithm for clustering of probability density functions (pdfs) in which the clustering problem is transformed into an optimization problem. In this optimization problem, the objective function is to minimize the internal validity measure-SF index, and the design variable is the name of the cluster in which pdfs are assigned to. To solve this optimization problem, a DE-based CDF is proposed. The efficiency and feasibility of the proposed approach are demonstrated through four numerical examples including analytical and real-life problems with gradually increasing the complexity of the problem. The obtained results mostly outperform several results of compared algorithms in the literature. |
Định danh: | http://dspace.ctu.edu.vn/jspui/handle/123456789/12502 |
Bộ sưu tập: | Tạp chí quốc tế |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
_file_ | 7.73 MB | Adobe PDF | Xem | |
Your IP: 18.191.68.112 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.