Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/12502
Nhan đề: A Differential Evolution-Based Clustering for Probability Density Functions
Tác giả: HO, KIEU DIEM
Võ, Văn Tài
NGUYEN, TRANG THAO
NGUYEN, THOI TRUNG
VO, DUY TRUNG
Năm xuất bản: 2018
Tùng thư/Số báo cáo: IEEE Access;6 .- p. 41325-41336
Tóm tắt: Clustering for probability density functions (CDFs) has recently emerged as a new interest technique in statistical pattern recognition because of its potential in various practical issues. For solving the CDF problems, evolutionary techniques which are successfully applied in clustering for discrete elements have not been studied much in CDF. Therefore, this paper presents for the first time an application of the differential evolution (DE) algorithm for clustering of probability density functions (pdfs) in which the clustering problem is transformed into an optimization problem. In this optimization problem, the objective function is to minimize the internal validity measure-SF index, and the design variable is the name of the cluster in which pdfs are assigned to. To solve this optimization problem, a DE-based CDF is proposed. The efficiency and feasibility of the proposed approach are demonstrated through four numerical examples including analytical and real-life problems with gradually increasing the complexity of the problem. The obtained results mostly outperform several results of compared algorithms in the literature.
Định danh: http://dspace.ctu.edu.vn/jspui/handle/123456789/12502
Bộ sưu tập: Tạp chí quốc tế

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_7.73 MBAdobe PDFXem
Your IP: 18.191.68.112


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.