Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://dspace.ctu.edu.vn/jspui/handle/123456789/125600| Nhan đề: | DEEP LEARNING-BASED SYSTEM FOR DETECTING EDITED AND ORIGINAL PORTRAIT IMAGES |
| Nhan đề khác: | XÂY DỰNG HỆ THỐNG NHẬN DIỆN ẢNH CHÂN DUNG ĐÃ QUA CHỈNH SỬA VÀ ẢNH GỐC BẰNG MÁY HỌC |
| Tác giả: | Phạm, Thế Phi Nguyễn, Duy Diễm Phụng |
| Từ khoá: | CÔNG NGHỆ THÔNG TIN - CHẤT LƯỢNG CAO |
| Năm xuất bản: | 2025 |
| Nhà xuất bản: | Trường Đại Học Cần Thơ |
| Tóm tắt: | AI has enabled the creation of highly realistic synthetic portrait images, commonly known as "deepfakes," which pose significant risks to digital trust and identity security. This thesis presents a deep learning–based system designed to automatically detect algorithmically manipulated portrait images and distinguish them from original photographs. The proposed solution leverages transfer learning with state-of-the-art convolutional neural network architectures, including ResNet50, EfficientNet-B0, and Xception. A two-stage training strategy—frozen-backbone training followed by fine-tuning—is employed, and model performance is evaluated using area under the receiver operating characteristic curve (AUC). Experimental results demonstrate that the selected model achieves robust generalization on unseen test data. Furthermore, a Gradio-based demonstration system enables real-time analysis of portrait images. The findings confirm the effectiveness of deep learning approaches for detecting AI-mediated image alterations, contributing to efforts in digital security and the prevention of misinformation. |
| Mô tả: | 41 Tr |
| Định danh: | https://dspace.ctu.edu.vn/jspui/handle/123456789/125600 |
| Bộ sưu tập: | Trường Công nghệ Thông tin & Truyền thông |
Các tập tin trong tài liệu này:
| Tập tin | Mô tả | Kích thước | Định dạng | |
|---|---|---|---|---|
| _file_ Giới hạn truy cập | 1.1 MB | Adobe PDF | ||
| Your IP: 216.73.216.55 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.