Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://dspace.ctu.edu.vn/jspui/handle/123456789/125600Toàn bộ biểu ghi siêu dữ liệu
| Trường DC | Giá trị | Ngôn ngữ |
|---|---|---|
| dc.contributor.advisor | Phạm, Thế Phi | - |
| dc.contributor.author | Nguyễn, Duy Diễm Phụng | - |
| dc.date.accessioned | 2026-01-30T03:30:55Z | - |
| dc.date.available | 2026-01-30T03:30:55Z | - |
| dc.date.issued | 2025 | - |
| dc.identifier.other | B2112000 | - |
| dc.identifier.uri | https://dspace.ctu.edu.vn/jspui/handle/123456789/125600 | - |
| dc.description | 41 Tr | vi_VN |
| dc.description.abstract | AI has enabled the creation of highly realistic synthetic portrait images, commonly known as "deepfakes," which pose significant risks to digital trust and identity security. This thesis presents a deep learning–based system designed to automatically detect algorithmically manipulated portrait images and distinguish them from original photographs. The proposed solution leverages transfer learning with state-of-the-art convolutional neural network architectures, including ResNet50, EfficientNet-B0, and Xception. A two-stage training strategy—frozen-backbone training followed by fine-tuning—is employed, and model performance is evaluated using area under the receiver operating characteristic curve (AUC). Experimental results demonstrate that the selected model achieves robust generalization on unseen test data. Furthermore, a Gradio-based demonstration system enables real-time analysis of portrait images. The findings confirm the effectiveness of deep learning approaches for detecting AI-mediated image alterations, contributing to efforts in digital security and the prevention of misinformation. | vi_VN |
| dc.language.iso | en | vi_VN |
| dc.publisher | Trường Đại Học Cần Thơ | vi_VN |
| dc.subject | CÔNG NGHỆ THÔNG TIN - CHẤT LƯỢNG CAO | vi_VN |
| dc.title | DEEP LEARNING-BASED SYSTEM FOR DETECTING EDITED AND ORIGINAL PORTRAIT IMAGES | vi_VN |
| dc.title.alternative | XÂY DỰNG HỆ THỐNG NHẬN DIỆN ẢNH CHÂN DUNG ĐÃ QUA CHỈNH SỬA VÀ ẢNH GỐC BẰNG MÁY HỌC | vi_VN |
| dc.type | Thesis | vi_VN |
| Bộ sưu tập: | Trường Công nghệ Thông tin & Truyền thông | |
Các tập tin trong tài liệu này:
| Tập tin | Mô tả | Kích thước | Định dạng | |
|---|---|---|---|---|
| _file_ Giới hạn truy cập | 1.1 MB | Adobe PDF | ||
| Your IP: 216.73.216.55 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.