Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/12598
Nhan đề: New spatial-organization-based scale and rotation invariant features for heterogeneous-content camera-based document image retrieval
Tác giả: Dang, Quoc Bao
Trần, Cao Đệ
Luqman, Muhammad Muzzamil
Coustaty, Mickaël
Ogier, Jean-Marc
Năm xuất bản: 2018
Tùng thư/Số báo cáo: Pattern Recognition Letters;112 .- p. 153-160
Tóm tắt: In this paper, we extend our earlier proposed feature descriptor named Scale and Rotation Invariant Features (SRIF) and a camera-based heterogeneous-content information spotting system based on the latter. Through its capacity to manage heterogeneous content in document images, SRIF represents an extension to existing strategies such as LLAH, which are dedicated to textual document images. This paper proposes new extensions of SRIF based on geometrical constraints between pairs of nearest points around a keypoint. SRIF has built-in capabilities to deal with feature point extraction errors which are introduced in camera-captured documents. To validate our method and compare it to the state-of-the-art, we have constructed three datasets of heterogeneous-content document images, along with the corresponding ground truths. Our experiment results confirm that SRIF outperforms the state-of-the-art in terms of processing time with equal or greater recall and precision for retrieval and spotting results.
Định danh: http://dspace.ctu.edu.vn/jspui/handle/123456789/12598
Bộ sưu tập: Tạp chí quốc tế

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_932.7 kBAdobe PDFXem
Your IP: 3.128.31.117


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.