Please use this identifier to cite or link to this item:
https://dspace.ctu.edu.vn/jspui/handle/123456789/22656
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Truong, Tri Dung | - |
dc.contributor.author | Truong, Cong Quynh | - |
dc.date.accessioned | 2020-03-25T02:56:23Z | - |
dc.date.available | 2020-03-25T02:56:23Z | - |
dc.date.issued | 2018 | - |
dc.identifier.issn | 1859-4603 | - |
dc.identifier.uri | http://dspace.ctu.edu.vn/jspui/handle/123456789/22656 | - |
dc.description.abstract | A ring R is called idempotent-semiprime (briefly, idem-semiprime) if for any a ϵ R, aea = 0 for all idempolent e ϵ I (R), impties a = 0, The class of idem-semiprime rings is a proper subclass of semiprime rings. This new class includes domains, reduced rings, and Von Neumann regular rings. In this article, we Investigate the usual ring theoretic constructions of idempotent-semiprime rings. | vi_VN |
dc.language.iso | en | vi_VN |
dc.relation.ispartofseries | Journal of Science, The University of DaNang-University of Science and Education;No 26(05) .- Page.1-4 | - |
dc.subject | Idem-semiprime ring | vi_VN |
dc.subject | Semiprime ring | vi_VN |
dc.subject | Von Neumann regular ring | vi_VN |
dc.title | On idempotent - semiprime rings | vi_VN |
dc.type | Article | vi_VN |
Appears in Collections: | Khoa học Trường ĐH Sư phạm - Đại học Đà Nẵng |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
_file_ Restricted Access | 1.92 MB | Adobe PDF | ||
Your IP: 3.144.16.40 |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.