Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/26034
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorLe, Bac-
dc.contributor.authorKieu, Lien-
dc.contributor.authorTran, Dat-
dc.date.accessioned2020-06-23T06:51:35Z-
dc.date.available2020-06-23T06:51:35Z-
dc.date.issued2019-
dc.identifier.issn1813-9663-
dc.identifier.urihttp://dspace.ctu.edu.vn/jspui/handle/123456789/26034-
dc.description.abstractIn the past few years, privacy issues in data mining have received considerable attention in the data mining literature. However, the problem of data security cannot simply be solved by restricting data collection or against unauthorized access, it should be dealt with by providing solutions that not only protect sensitive information, but also not affect to the accuracy of the results in data mining and not violate the sensitive knowledge related with individual privacy or competitive advantage in businesses. Sensitive association rule hiding is an important issue in privacy preserving data mining. The aim of association rule hiding is to minimize the side effects on the sanitized database, which means to reduce the number of missing non-sensitive rules and the number of generated ghost rules. Current methods for hiding sensitive rules cause side effects and data loss. In this paper, we introduce a new distortion-based method to hide sensitive rules. This method proposes the determination of critical transactions based on the number of non-sensitive maximal frequent itemsets that contain at least one item to the consequent of the sensitive rule, they can be directly affected by the modified transactions. Using this set, the number of non-sensitive itemsets that need to be considered is reduced dramatically. We compute the smallest number of transactions for modification in advance to minimize the damage to the database. Comparative experimental results on real datasets showed that the proposed method can achieve better results than other methods with fewer side effects and data loss.vi_VN
dc.language.isoenvi_VN
dc.relation.ispartofseriesJournal of Computer Science and Cybernetics;Vol.35(04) .- P.337–354-
dc.subjectPrivacy preserving data mingvi_VN
dc.subjectAssociation rule hidingvi_VN
dc.subjectSide effectsvi_VN
dc.subjectDistortion-based methodvi_VN
dc.titleDistortion-based heuristic method for sensitive association rule hidingvi_VN
dc.typeArticlevi_VN
Bộ sưu tập: Tin học và Điều khiển học (Journal of Computer Science and Cybernetics)

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
4.13 MBAdobe PDF
Your IP: 18.188.96.25


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.