Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/38128
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorPham-Toan, D.-
dc.contributor.authorVo-Van, T.-
dc.contributor.authorPham-Chau, A. T.-
dc.contributor.authorNguyen-Trang, T.-
dc.contributor.authorHo-Kieu, D.-
dc.date.accessioned2020-10-27T02:32:11Z-
dc.date.available2020-10-27T02:32:11Z-
dc.date.issued2019-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/38128-
dc.description.abstractThis paper proposes an evolutionary computing based automatic partitioned clustering of probability density function, the so-called binary adaptive elitist differential evolution for clustering of probability density functions (baeDE-CDFs). Herein, the k-medoids based representative probability density functions (PDFs) are preferred to the k-means one for their capability of avoiding outlier effectively. Moreover, addressing clustering problem in favor of an evolutionary optimization one permits determining number of clusters “on the run”. Notably, the application of adaptive elitist differential evolution (aeDE) algorithm with binary chromosome representation not only decreases the computational burden remarkably, but also increases the quality of solution significantly. Multiple numerical examples are designed and examined to verify the proposed algorithm’s performance, and the numerical results are evaluated using numerous criteria to give a comprehensive conclusion. After some comparisons with other algorithms in the literature, it is worth noticing that the proposed algorithm reveals an outstanding performance in both quality of solution and computational time in a statistically significant way.vi_VN
dc.language.isoenvi_VN
dc.relation.ispartofseriesMathematical Problemsin Engineering;P.1-16-
dc.subjectDifferential evolution (aeDE)vi_VN
dc.subjectAlgorithm with binary chromosomevi_VN
dc.titleA new Binary Adaptive Elitist Differential Evolution Based Automatic k-Medoids Clustering for Probability Density Functionsvi_VN
dc.typeArticlevi_VN
Bộ sưu tập: Tạp chí quốc tế

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_3.31 MBAdobe PDFXem
Your IP: 216.73.216.19


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.