Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/39529
Nhan đề: Levitin–Polyak well-posedness for constrained quasiconvex vector optimization problems
Tác giả: Lalitha, C. S.
Chatterjee, Prashanto
Từ khoá: Levitin–Polyakwell-posedness
Quasiconvexity
Efficiency
Uppersemicontinuity
Hausdorffconvergence
Năm xuất bản: 2019
Tùng thư/Số báo cáo: Journal of Global Optimization;Vol. 59 No. 01 .- P.1-18
Tóm tắt: In this paper, a notion of Levitin–Polyak (LP in short) well-posedness is introduced for a vector optimization problem in terms of minimizing sequences and efficient solutions. Sufficient conditions for the LP well-posedness are studied under the assumptions of compactness of the feasible set, closedness of the set of minimal solutions and continuity of the objective function. The continuity assumption is then weakened to cone lower semicontinuity for vector-valued functions. A notion of LP minimizing sequence of sets is studied to establish another set of sufficient conditions for the LP well-posedness of the vector problem. For a quasiconvex vector optimization problem, sufficient conditions are obtained by weakening the compactness of the feasible set to a certain level-boundedness condition. This in turn leads to the equivalence of LP well-posedness and compactness of the set of efficient solutions. Some characterizations of LP well-posedness are given in terms of the upper Hausdorff convergence of the sequence of sets of approximate efficient solutions and the upper semicontinuity of an approximate efficient map by assuming the compactness of the set of efficient solutions, even when the objective function is not necessarily quasiconvex. Finally, a characterization of LP well-posedness in terms of the closedness of the approximate efficient map is provided by assuming the compactness of the feasible set.
Định danh: https://dspace.ctu.edu.vn/jspui/handle/123456789/39529
ISSN: 0925-5001
Bộ sưu tập: Tạp chí quốc tế

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_488.38 kBAdobe PDFXem
Your IP: 18.216.116.226


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.