Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://dspace.ctu.edu.vn/jspui/handle/123456789/39538
Nhan đề: | Novel hybrid DCNN–SVM model for classifying RNA-sequencing gene expression data |
Tác giả: | Huynh, Phuoc-Hai Nguyen, Van-Hoa Do, Thanh-Nghi |
Từ khoá: | Deep convolutional neural network Support vector machines RNA-sequencing Gene expression Classification |
Năm xuất bản: | 2019 |
Tùng thư/Số báo cáo: | Journal of Information and Telecommunication;Vol. 3 No. 04 .- P.533–547 |
Tóm tắt: | In recent years, cancer is one of the leading causes of death worldwide. Therefore, there are more and more studies that have been conducted to find effective solutions to diagnose and treat cancer. However, there are still many challenges in cancer treatment because possible causes of cancer are genetic disorders or epigenetic alterations in the cells. RNA sequencing is a powerful technique for gene expression profiling in model organisms and it is able to produce information for diagnosing cancer at the biomolecular level. Gene expression data are used to build a classification model which supports treatment of cancer. Nevertheless, its characteristic is very-high-dimensional data which lead to over-fitting issue of classifying model. In this paper, we propose a new gene expression classification model of support vector machines (SVM) using features extracted by deep convolutional neural network (DCNN). In our approach, the DCNN extracts latent features from gene expression data, then they are used in conjunction with SVM that efficiently classify RNA-Seq gene expression data. Numerical test results on RNA-Seq gene expression datasets from The Cancer Genome Atlas (TCGA) illustrate that our proposed algorithm is more accurate than state-of-the-art classifying models including DCNN, SVM and random forests. |
Định danh: | https://dspace.ctu.edu.vn/jspui/handle/123456789/39538 |
Bộ sưu tập: | Tạp chí quốc tế |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
_file_ | 1.99 MB | Adobe PDF | Xem | |
Your IP: 18.227.13.119 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.