Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/41007
Nhan đề: Shallow landslide susceptibility mapping: A comparison between classification and regression tree and reduced error pruning tree algorithms
Tác giả: Ghasemian, Bahareh
Talebpoor Asl, Dawod
Pham, Thai Binh
Avand, Mohammadtghi
Nguyen, Huu Duy
Janizadeh, Saeid
Từ khoá: Shallow landslide
Machine learning
Information gain ratio
Classifier
GIS
Iran
Năm xuất bản: 2020
Tùng thư/Số báo cáo: Vietnam Journal of Earth Sciences;Vol. 42, No. 03 .- P.208-227
Tóm tắt: Shallow landslides through land degrading not only lead to threat the properly and life of human but they also may produce huge ecosystem damages. The aim of this study was to compare the performance of two decision tree machine learning algorithms including classification and regression tree (CART) and reduced error pruning tree (REPTree) for shallow landslide susceptibility mapping in Bijar, Kurdistan province, Iran. We first used 20 conditioning factors and then they were tested by information gain ratio (IGR) technique to select the most important ones. We then constructed a geodatabase based on the selected factors along with a total of 111 landslide locations with a ratio of 80/20 (for calibration/validation). The performance of the models was checked by the true positive rate (TP Rate), false positive rate (FP Rate), precision, recall, F1-Measure, Kappa, mean absolute error, and area under the receiver operatic curve (AUC). Results of IGR specified that the slope angle and TWI had the most contribution to shallow landslide occurrence in the study area. Moreover, results concluded that although these models had a high goodness-of-fit and prediction accuracy, the CART model (AUC=0.856) outperformed the REPTree model (AUC=0.837). Therefore, the CART model can be used as a promising tool and also as a base classifier to hybrid with optimization algorithms and Meta classifiers for spatial prediction of shallow landslide-prone areas.
Định danh: https://dspace.ctu.edu.vn/jspui/handle/123456789/41007
ISSN: 0866-7187
Bộ sưu tập: Vietnam journal of Earth sciences

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
5.6 MBAdobe PDF
Your IP: 3.144.6.144


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.