Please use this identifier to cite or link to this item: https://dspace.ctu.edu.vn/jspui/handle/123456789/41008
Title: Accuracy assessment of extreme learning machine in predicting soil compression soefficient
Authors: Ly, Hai Bang
G. Asteris, Panagiotis
Pham, Thai Binh
Keywords: Compression coefficient
Extreme machine learning
Monte Carlo simulations
Issue Date: 2020
Series/Report no.: Vietnam Journal of Earth Sciences;Vol. 42, No. 03 .- P.228-236
Abstract: The compression coefficient (Cc) is an important soil mechanical parameter that represents soil compressibility in the process of consolidation. In this study, a machine learning derived model, namely extreme learning algorithm (ELM), was used to predict the Cc of soil. A total of 189 experimental results were used and randomly divided to construct the training and testing parts for the development and validation of ELM. Monte Carlo approach was applied to take into account the random sampling of samples constituting the training dataset. A number of 13 input parameters reflecting the experiment were used as the input variables to predict the output Cc. Several statistical criteria, such as mean absolute error (MAE), root mean square error (RMSE), correlation coefficient (R) and the Monte Carlo convergence estimator were used to assess the performance of ELM in predicting the Cc of soil. The results showed that ELM had a strong capacity to predict the Cc of soil, with the R value > 0.95. The convergence of results, as well as the capability of ELM were fully investigated to understand the advantage of using ELM as a predictor.
URI: https://dspace.ctu.edu.vn/jspui/handle/123456789/41008
ISSN: 0866-7187
Appears in Collections:Vietnam journal of Earth sciences

Files in This Item:
File Description SizeFormat 
_file_
  Restricted Access
2.22 MBAdobe PDF
Your IP: 18.118.33.130


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.