Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/41008
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorLy, Hai Bang-
dc.contributor.authorG. Asteris, Panagiotis-
dc.contributor.authorPham, Thai Binh-
dc.date.accessioned2020-12-21T02:42:41Z-
dc.date.available2020-12-21T02:42:41Z-
dc.date.issued2020-
dc.identifier.issn0866-7187-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/41008-
dc.description.abstractThe compression coefficient (Cc) is an important soil mechanical parameter that represents soil compressibility in the process of consolidation. In this study, a machine learning derived model, namely extreme learning algorithm (ELM), was used to predict the Cc of soil. A total of 189 experimental results were used and randomly divided to construct the training and testing parts for the development and validation of ELM. Monte Carlo approach was applied to take into account the random sampling of samples constituting the training dataset. A number of 13 input parameters reflecting the experiment were used as the input variables to predict the output Cc. Several statistical criteria, such as mean absolute error (MAE), root mean square error (RMSE), correlation coefficient (R) and the Monte Carlo convergence estimator were used to assess the performance of ELM in predicting the Cc of soil. The results showed that ELM had a strong capacity to predict the Cc of soil, with the R value > 0.95. The convergence of results, as well as the capability of ELM were fully investigated to understand the advantage of using ELM as a predictor.vi_VN
dc.language.isoenvi_VN
dc.relation.ispartofseriesVietnam Journal of Earth Sciences;Vol. 42, No. 03 .- P.228-236-
dc.subjectCompression coefficientvi_VN
dc.subjectExtreme machine learningvi_VN
dc.subjectMonte Carlo simulationsvi_VN
dc.titleAccuracy assessment of extreme learning machine in predicting soil compression soefficientvi_VN
dc.typeArticlevi_VN
Bộ sưu tập: Vietnam journal of Earth sciences

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
2.22 MBAdobe PDF
Your IP: 18.191.255.7


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.