Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://dspace.ctu.edu.vn/jspui/handle/123456789/41009
Nhan đề: | Landslide susceptibility mapping using Forest by Penalizing Attributes (FPA) algorithm based machine learning approach |
Tác giả: | Tran, Van Phong Ly, Hai-Bang Phan, Trong Trinh Prakash, Indra Dao, Trung Hoan |
Từ khoá: | AUC GIS Landslide susceptibility mapping Machine learning ROC Vietnam |
Năm xuất bản: | 2020 |
Tùng thư/Số báo cáo: | Vietnam Journal of Earth Sciences;Vol. 42, No. 03 .- P.237-246 |
Tóm tắt: | Landslide susceptibility mapping is a helpful tool for assessment and management of landslides of an area. In this study, we have applied first time Forest by Penalizing Attributes (FPA) algorithm-based Machine Learning (ML) approach for mapping of landslide susceptibility at Muong Lay district (Vietnam). For this aim, 217 historical landslides locations were identified and analyzed for the development of FPA model and generation of susceptibility map. Nine landslide topographical and geo-environmental conditioning factors (curvature, geology/lithology, aspect, distance from faults, rivers and roads, weathering crust, slope, and deep division) were utilized to construct the training and validating datasets for landslide modeling. Different quantitative statistical indices including Area Under the Receiver Operating Characteristic (ROC) curve (AUC) were used to evaluate the performance of the model. The results indicate that the predictive capability of the FPA is very good for landslide susceptibility mapping on both training (AUC = 0.935) and validating (AUC = 0.882) datasets. Thus, the novel FPA based ML model can be utilized for the development of accurate landslide susceptibility map of the study area and this approach can also be applied in other landslide prone areas. |
Định danh: | https://dspace.ctu.edu.vn/jspui/handle/123456789/41009 |
ISSN: | 0866-7187 |
Bộ sưu tập: | Vietnam journal of Earth sciences |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
_file_ Giới hạn truy cập | 2.45 MB | Adobe PDF | ||
Your IP: 18.225.234.110 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.