Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/41009
Nhan đề: Landslide susceptibility mapping using Forest by Penalizing Attributes (FPA) algorithm based machine learning approach
Tác giả: Tran, Van Phong
Ly, Hai-Bang
Phan, Trong Trinh
Prakash, Indra
Dao, Trung Hoan
Từ khoá: AUC
GIS
Landslide susceptibility mapping
Machine learning
ROC
Vietnam
Năm xuất bản: 2020
Tùng thư/Số báo cáo: Vietnam Journal of Earth Sciences;Vol. 42, No. 03 .- P.237-246
Tóm tắt: Landslide susceptibility mapping is a helpful tool for assessment and management of landslides of an area. In this study, we have applied first time Forest by Penalizing Attributes (FPA) algorithm-based Machine Learning (ML) approach for mapping of landslide susceptibility at Muong Lay district (Vietnam). For this aim, 217 historical landslides locations were identified and analyzed for the development of FPA model and generation of susceptibility map. Nine landslide topographical and geo-environmental conditioning factors (curvature, geology/lithology, aspect, distance from faults, rivers and roads, weathering crust, slope, and deep division) were utilized to construct the training and validating datasets for landslide modeling. Different quantitative statistical indices including Area Under the Receiver Operating Characteristic (ROC) curve (AUC) were used to evaluate the performance of the model. The results indicate that the predictive capability of the FPA is very good for landslide susceptibility mapping on both training (AUC = 0.935) and validating (AUC = 0.882) datasets. Thus, the novel FPA based ML model can be utilized for the development of accurate landslide susceptibility map of the study area and this approach can also be applied in other landslide prone areas.
Định danh: https://dspace.ctu.edu.vn/jspui/handle/123456789/41009
ISSN: 0866-7187
Bộ sưu tập: Vietnam journal of Earth sciences

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
2.45 MBAdobe PDF
Your IP: 18.225.234.110


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.