Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/41035
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorNguyen, Duc Thanh-
dc.contributor.authorLe, Tran Thang-
dc.contributor.authorVuong, Anh Trung-
dc.contributor.authorNguyen, Quang Vinh-
dc.date.accessioned2020-12-22T02:31:10Z-
dc.date.available2020-12-22T02:31:10Z-
dc.date.issued2020-
dc.identifier.issn0866-7187-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/41035-
dc.description.abstractThe main objective of this study is to propose a method for identifying aerodynamic coefficient derivatives of aircraft attitude channel using spiking neural network (SNN) and Gauss-Newton algorithm based on data obtained from actual flights. Out of these, the SNN multi-layer network was trained by Normalized Spiking Error Back Propagation, in which, in the forward propagation period, the time of output spikes is calculating by solving quadratic equations instead of detection by traditional methods. The phase of propagation of errors backward uses the step-by-step calculation instead of the conventional gradient calculation method. SNN in combination with Gauss-Newton iterative calculation algorithm proposed in this study enables the identification of aerodynamic coefficient derivatives in a nonlinear model for aerodynamic parameters with higher accuracy and faster calculation time. The identification results are compared with the results when using the Radial Basis Function (RBF) network to prove the algorithm efficiency.vi_VN
dc.language.isoenvi_VN
dc.relation.ispartofseriesVietnam Journal of Earth Sciences;Vol. 42, No. 03 .- P.276-287-
dc.subjectAerodynamic identificationvi_VN
dc.subjectNonlinear modelvi_VN
dc.subjectFlying vehiclevi_VN
dc.titleIndentify some aerodynamic parameters of a airplane using the spiking neural networkvi_VN
dc.typeArticlevi_VN
Bộ sưu tập: Vietnam journal of Earth sciences

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
2.7 MBAdobe PDF
Your IP: 216.73.216.119


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.