Please use this identifier to cite or link to this item: https://dspace.ctu.edu.vn/jspui/handle/123456789/4253
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNguyễn, Thư Hương-
dc.contributor.authorNguyen, Ba Truong-
dc.date.accessioned2018-09-14T08:00:05Z-
dc.date.available2018-09-14T08:00:05Z-
dc.date.issued2016-
dc.identifier.issn2286-4822-
dc.identifier.urihttp://dspace.ctu.edu.vn/jspui/handle/123456789/4253-
dc.description.abstractNew optimal strong-stability-preserving (SSP) Hermite-Birkhoff (HB) methods, HB(k,s,p) of order p = 5,6,...,12 with nonnegative coefficients, are constructed by combining k -step methods of order (p - 4) and s -stage explicit Runge-Kutta methods of order 5 (RK5), where s = 4,5,...,10. These new methods preserve the monotonicity property of the solution, so they are suitable for solving ordinary differential equations (ODEs) coming from spatial discretization of hyperbolic partial differential equations (PDEs). The canonical Shu -vi_VN
dc.language.isoenvi_VN
dc.relation.ispartofseriesEuropean Academic Research;IV .- p.2582-2604-
dc.subjectStrong-stability-preservingvi_VN
dc.subjectHermite–Birkhoff methodvi_VN
dc.subjectSSP coefficientvi_VN
dc.subjectTime discretizationvi_VN
dc.subjectMethod of linesvi_VN
dc.subjectComparison with other SSP methodsvi_VN
dc.titleStrong-stability-preserving Hermite - Birkhoff time discretization methods combining k-step methods and explicit s-stage Runge-Kutta methods of order 5vi_VN
dc.typeArticlevi_VN
Appears in Collections:Tạp chí quốc tế

Files in This Item:
File Description SizeFormat 
_file_861.72 kBAdobe PDFView/Open
Your IP: 3.144.30.14


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.