Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://dspace.ctu.edu.vn/jspui/handle/123456789/43024
Nhan đề: | Using artificial neural network (ANN) for prediction of soil coefficient of consolidation |
Tác giả: | Pham, Thai Binh Singh, Sushant K. Ly, Hai Bang |
Từ khoá: | Artificial Neural Networks Compression coefficient Machine learning Vietnam |
Năm xuất bản: | 2020 |
Tùng thư/Số báo cáo: | Vietnam Journal of Earth Sciences;Vol. 42, No. 04 .- P.311-319 |
Tóm tắt: | Soil Coefficient of Consolidation (Cv) is a crucial mechanical parameter and used to characterize whether the soil undergoes consolidation or compaction when subjected to pressure. In order to define such a parameter, the experimental approaches are costly, time-consuming, and required appropriate equipment to perform the tests. In this study, the development of an alternative manner to estimate the Cv, based on Artificial Neural Network (ANN), was conducted. A database containing 188 tests was used to develop the ANN model. Two structures of ANN were considered, and the accuracy of each model was assessed using common statistical measurements such as the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE). In performing 600 simulations in each case, the ANN structure containing 14 neurons was statistically superior to the other one. Finally, a typical ANN result was presented to prove that it can be an excellent predictor of the problem, with a satisfying accuracy performance that yielded of RMSE = 0.0614, MAE = 0.0415, and R2 = 0.99727. This study might help in quick and accurate prediction of the Cv used in civil engineering problems. |
Định danh: | https://dspace.ctu.edu.vn/jspui/handle/123456789/43024 |
ISSN: | 0866-7187 |
Bộ sưu tập: | Vietnam journal of Earth sciences |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
_file_ Giới hạn truy cập | 3.29 MB | Adobe PDF | ||
Your IP: 3.140.188.174 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.