Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/4418
Nhan đề: Differences in salinity tolerance of genetically distinct Phragmites australis clones
Tác giả: Achenbach, Luciana
Eller, Franziska
Nguyễn, Xuân Lộc
Brix, Hans
Từ khoá: Common reed
Ecophysiology
Geographic rang
Ion concentration
Ploidy leve
Salt-stress tolerance
Năm xuất bản: 2013
Tùng thư/Số báo cáo: AoB PLANTS;5 .- p.1-19
Tóm tắt: Different clones of the wetland grass Phragmites australis differ in their morphology and physiology, and hence in their ability to cope with environmental stress. We analysed the responses of 15 P. australis clones with distinct ploidy levels (PLs) (4n, 6n, 8n, 10n, 12n) and geographic origins (Romania, Russia, Japan, Czech Republic, Australia) to step-wise increased salinity (8, 16, 24, 32, 40, 56 and 72 ppt). Shoot elongation rate, photosynthesis and plant partspecific ion accumulation were studied in order to assess if traits associated with salinity tolerance can be related to the genetic background and the geographic origin of the clones. Salt stress affected all clones, but at different rates. The maximum height was reduced from 1860 mm in control plants to 660 mm at 40 ppt salinity. The shoot elongation rate of salt-exposed plants varied significantly between clones until 40 ppt salinity. The light-saturated photosynthesis rate (Pmax) was stimulated by a salinity of 8 ppt, but decreased significantly at higher salinities. The stomatal conductance (gs) and the transpiration rate (E) decreased with increasing salinity. Only three clones survived at 72 ppt salinity, although their rates of photosynthesis were strongly inhibited. The roots and basal leaves of the salt-exposed plants accumulated high concentrations of water-extractable Na+ (1646 and 1004 mmol g21 dry mass (DM), respectively) and Cl2 (1876 and 1400 mmol g21 DM, respectively). The concentrations of water-extractable Mg2+ and Ca2+ were reduced in salt-exposed plants compared with controls. The variation of all the measured parameters was higher among clones than among PLs. We conclude that the salinity tolerance of distinct P. australis clones varies widely and can be partially attributed to their longitudinal geographic origin, but not to PL. Further investigation will help in improving the understanding of this species? salt tolerance mechanisms and their connection to genetic factors.
Định danh: http://dspace.ctu.edu.vn/jspui/handle/123456789/4418
Bộ sưu tập: Tạp chí quốc tế

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_994.69 kBAdobe PDFXem
Your IP: 18.226.186.153


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.