Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/47779
Nhan đề: A two-channel model for representation learning in Vietnamese sentiment classification problem
Tác giả: Nguyen, Hoang Quan
Vu, Ly
Nguyen, Quang Uy
Từ khoá: Sentiment analysis
Deep learning
Word to vector (Word2vec)
Parts of speech (POS)
Representation learning
Năm xuất bản: 2020
Tùng thư/Số báo cáo: Journal of Computer Science and Cybernetics;Vol. 36, No. 04 .- P.305–323
Tóm tắt: Sentiment classification (SC) aims to determine whether a document conveys a positive or negative opinion. Due to the rapid development of the digital world, SC has become an impor tant research topic that affects to many aspects of our life. In SC based on machine learning, the representation of the document strongly influences on its accuracy. Word embedding (WE)-based techniques, i.e., Word2vec techniques, are proved to be beneficial techniques to the SC problem. However, Word2vec is often not enough to represent the semantic of Vietnamese documents due to the complexity of semantics and syntactic structure. In this paper, we propose a new representation learning model called a two-channel vector to learn a higher-level feature of a document for SC. Our model uses two neural networks to learn both the semantic feature and the syntactic feature. The semantic feature is learnt using Word2vec and the syntactic feature is learnt through Parts of Speech tag (POS). Two features are then combined and input to a Softmax function to make the final classification. We carry out intensive experiments on 4 recent Vietnamese sentiment datasets to evaluate the performance of the proposed architecture. The experimental results demonstrate that the proposed model can enhance the accuracy of SC problems compared to two single models and three state-of-the-art ensemble methods.
Định danh: https://dspace.ctu.edu.vn/jspui/handle/123456789/47779
ISSN: 1813-9663
Bộ sưu tập: Tin học và Điều khiển học (Journal of Computer Science and Cybernetics)

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
4.32 MBAdobe PDF
Your IP: 3.22.68.29


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.