Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/47780
Nhan đề: Some new results on automatic indentification of Vietnamese folk songs Cheo and Quanho
Tác giả: Chu, Ba Thanh
Trinh, Van Loan
Nguyen, Hong Quang
Từ khoá: Identification
Folk songs
Vietnamese
Cheo
Quanho
GMM
MFCC
Excerpt
Tempo
F0
I-vectors
Năm xuất bản: 2020
Tùng thư/Số báo cáo: Journal of Computer Science and Cybernetics;Vol. 36, No. 04 .- P.325–345
Tóm tắt: Vietnamese folk songs are very rich in genre and content. Identifying Vietnamese folk tunes will contribute to the storage and search for information about these tunes automatically. The paper will present an overview of the classification of music genres that have been performed in Vietnam and abroad. For two types of very popular folk songs of Vietnam such as Cheo and Quanho, the paper describes the dataset and Gaussian Mixture Model (GMM) to perform the experimentson identifying some of these folk songs. The GMM used for experiment with 4 sets of parameters containing Mel Frequency Cepstral Coefficients (MFCC), energy, the first and the second derivatives of MFCC and energy, tempo, intensity, and fundamental frequency. The results showed that the parameters added to the MFCCs contributed significantly to the improvement of the identification accuracy with the appropriate values of Gaussian component number M. Our experiments also showed that, on average, the length of the excerpts was only 29.63% of the whole song for Cheo and 38.1%of the whole song for Quanho, the identification rate was only 3.1% and 2.33% less than the whole song for Cheo and Quanho, respectively. The identification of Cheo and Quanho was also tested with i-vectors.
Định danh: https://dspace.ctu.edu.vn/jspui/handle/123456789/47780
ISSN: 1813-9663
Bộ sưu tập: Tin học và Điều khiển học (Journal of Computer Science and Cybernetics)

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
4.51 MBAdobe PDF
Your IP: 3.15.1.23


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.