Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/4862
Nhan đề: Symmetric Paralllel Class Expression Learning
Tác giả: Trần, Công Án
Marsland, Stephen
Dietrich, Jens
Guesgen, Hans W.
Từ khoá: Description logic learning
Parallel
Symmetric
Exception
Năm xuất bản: 2017
Tùng thư/Số báo cáo: Journal of Machine Learning Research;18 .- p.1-34
Tóm tắt: In machine learning, one often encounters data sets where a general pattern is violated by a relatively small number of exceptions (for example, a rule that says that all birds can fly is violated by examples such as penguins). This complicates the concept learning process and may lead to the rejection of some simple and expressive rules that cover many cases. In this paper we present an approach to this problem in description logic learning by computing partial descriptions (which are not necessarily entirely complete) of both positive and negative examples and combining them. Our Symmetric Parallel Class Expression Learning approach enables the generation of general rules with exception patterns included. We demonstrate that this algorithm provides significantly better results (in terms of metrics such as accuracy, search space covered, and learning time) than standard approaches on some typical data sets. Further, the approach has the added benefit that it can be parallelised relatively simply, leading to much faster exploration of the search tree on modern computers.
Định danh: http://dspace.ctu.edu.vn/jspui/handle/123456789/4862
Bộ sưu tập: Tạp chí quốc tế

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_923.96 kBAdobe PDFXem
Your IP: 3.149.29.190


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.