Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/5205
Nhan đề: Strong-stability-preserving, Hermite-Birkhoff time-discretization based on k step methods and 8-stage explicit Runge-Kutta methods of order 5 and 4
Tác giả: Nguyễn, Thư Hương
Vaillancourt, Rémi
Nguyen, Ba Truong
Từ khoá: Strongstability preserving
Hermite–Birkhoff method
SSP coefficient
Time discretization
Method of lines
Comparison with other SSP methods
Năm xuất bản: 2014
Tùng thư/Số báo cáo: Journal of Computational and Applied Mathematics;263 .- p.45-58
Tóm tắt: Ruuth and Spiteri have shown, in 2002, that fifth-order strong-stability-preserving (SSP) explicit Runge-Kutta (RK) methods with nonnegative coefficients do not exist. One of the purposes of the present paper is to show that the Ruuth-Spiteri barrier can be broken by adding backsteps to RK methods. New optimal, 8-stage, explicit, SSP, Hermite-Birkhoff (HB) time discretizations of order p, p = 5, 6, . . . , 12, with nonnegative coefficients are constructed by combining linear k-step methods of order (p - 4) with an 8-stage explicit RK method of order 5 (RK(8, 5)). These new SSP HB methods preserve the monotonicity property of the solution and prevent error growth; therefore, they are suitable for solving hyperbolic partial differential equations (PDEs) by the method of lines. Moreover, these new HB methods have larger effective SSP coefficients and larger maximum effective CFL numbers than Huang's hybrid methods and RK methods of the same order when applied to the inviscid Burgers equation. Generally, HB methods combined with RK(8, 5) have maximum stepsize 24% larger than HB combined with RK(8, 4).
Định danh: http://localhost:8080//jspui/handle/123456789/5205
Bộ sưu tập: Tạp chí quốc tế

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_480.08 kBAdobe PDFXem
Your IP: 18.223.210.196


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.