Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/57389
Nhan đề: Weighted structural support vector machine
Tác giả: Nguyen, The Cuong
Huynh, The Phung
Từ khoá: Support vector machine
Twin support vector machine
Structural twin support vector machine
Weighted structural - support vector machine
Năm xuất bản: 2021
Tùng thư/Số báo cáo: Journal of Computer Science and Cybernetics;Vol.37, No.01 .- P.43–56
Tóm tắt: In binary classification problems, two classes of data seem to be different from each other. It is expected to be more complicated due to the clusters in each class also tend to be different. Traditional algorithms as Support Vector Machine (SVM) or Twin Support Vector Machine (TWSVM) cannot sufficiently exploit structural information with cluster granularity of the data, cause limitation on the capability of simulation of data trends. Structural Twin Support Vector Machine (S-TWSVM) sufficiently exploits structural information with cluster granularity for learning a represented hyperplane. Therefore, the capability of S-TWSVM’s data simulation is better than that of TWSVM. However, for the datasets where each class consists of clusters of different trends, the S-TWSVM’s data simulation capability seems restricted. Besides, the training time of S-TWSVM has not been improved compared to TWSVM. This paper proposes a new Weighted Structural - Support Vector Machine (called WS-SVM) for binary classification problems with a class-vs-clusters strategy. Experimental results show that WS-SVM could describe the tendency of the distribution of cluster information. Furthermore, both the theory and experiment show that the training time of the WS-SVM for classification problem has significantly improved compared to S-TWSVM.
Định danh: https://dspace.ctu.edu.vn/jspui/handle/123456789/57389
ISSN: 1813-9663
Bộ sưu tập: Tin học và Điều khiển học (Journal of Computer Science and Cybernetics)

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
2.55 MBAdobe PDF
Your IP: 18.118.0.93


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.