Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://dspace.ctu.edu.vn/jspui/handle/123456789/57389
Nhan đề: | Weighted structural support vector machine |
Tác giả: | Nguyen, The Cuong Huynh, The Phung |
Từ khoá: | Support vector machine Twin support vector machine Structural twin support vector machine Weighted structural - support vector machine |
Năm xuất bản: | 2021 |
Tùng thư/Số báo cáo: | Journal of Computer Science and Cybernetics;Vol.37, No.01 .- P.43–56 |
Tóm tắt: | In binary classification problems, two classes of data seem to be different from each other. It is expected to be more complicated due to the clusters in each class also tend to be different. Traditional algorithms as Support Vector Machine (SVM) or Twin Support Vector Machine (TWSVM) cannot sufficiently exploit structural information with cluster granularity of the data, cause limitation on the capability of simulation of data trends. Structural Twin Support Vector Machine (S-TWSVM) sufficiently exploits structural information with cluster granularity for learning a represented hyperplane. Therefore, the capability of S-TWSVM’s data simulation is better than that of TWSVM. However, for the datasets where each class consists of clusters of different trends, the S-TWSVM’s data simulation capability seems restricted. Besides, the training time of S-TWSVM has not been improved compared to TWSVM. This paper proposes a new Weighted Structural - Support Vector Machine (called WS-SVM) for binary classification problems with a class-vs-clusters strategy. Experimental results show that WS-SVM could describe the tendency of the distribution of cluster information. Furthermore, both the theory and experiment show that the training time of the WS-SVM for classification problem has significantly improved compared to S-TWSVM. |
Định danh: | https://dspace.ctu.edu.vn/jspui/handle/123456789/57389 |
ISSN: | 1813-9663 |
Bộ sưu tập: | Tin học và Điều khiển học (Journal of Computer Science and Cybernetics) |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
_file_ Giới hạn truy cập | 2.55 MB | Adobe PDF | ||
Your IP: 18.118.0.93 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.