Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/57389
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorNguyen, The Cuong-
dc.contributor.authorHuynh, The Phung-
dc.date.accessioned2021-07-06T06:58:12Z-
dc.date.available2021-07-06T06:58:12Z-
dc.date.issued2021-
dc.identifier.issn1813-9663-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/57389-
dc.description.abstractIn binary classification problems, two classes of data seem to be different from each other. It is expected to be more complicated due to the clusters in each class also tend to be different. Traditional algorithms as Support Vector Machine (SVM) or Twin Support Vector Machine (TWSVM) cannot sufficiently exploit structural information with cluster granularity of the data, cause limitation on the capability of simulation of data trends. Structural Twin Support Vector Machine (S-TWSVM) sufficiently exploits structural information with cluster granularity for learning a represented hyperplane. Therefore, the capability of S-TWSVM’s data simulation is better than that of TWSVM. However, for the datasets where each class consists of clusters of different trends, the S-TWSVM’s data simulation capability seems restricted. Besides, the training time of S-TWSVM has not been improved compared to TWSVM. This paper proposes a new Weighted Structural - Support Vector Machine (called WS-SVM) for binary classification problems with a class-vs-clusters strategy. Experimental results show that WS-SVM could describe the tendency of the distribution of cluster information. Furthermore, both the theory and experiment show that the training time of the WS-SVM for classification problem has significantly improved compared to S-TWSVM.vi_VN
dc.language.isoenvi_VN
dc.relation.ispartofseriesJournal of Computer Science and Cybernetics;Vol.37, No.01 .- P.43–56-
dc.subjectSupport vector machinevi_VN
dc.subjectTwin support vector machinevi_VN
dc.subjectStructural twin support vector machinevi_VN
dc.subjectWeighted structural - support vector machinevi_VN
dc.titleWeighted structural support vector machinevi_VN
dc.typeArticlevi_VN
Bộ sưu tập: Tin học và Điều khiển học (Journal of Computer Science and Cybernetics)

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
2.55 MBAdobe PDF
Your IP: 216.73.216.55


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.