Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/64164
Nhan đề: Estimation of above ground biomass using support vector machines and ALOS/PALSAR data
Tác giả: Sivasankar, Thota
Mushtaq Lone, Junaid
K.K, Sarma
Qadir, Abdul
P.L.N, Raju
Từ khoá: Synthetic aperture radar
ALOS-2
PALSAR-2
Above ground biomass
Support vector machines
Năm xuất bản: 2019
Tùng thư/Số báo cáo: Vietnam Journal of Earth Sciences;Vol. 41, No. 02 .- P.95-104
Tóm tắt: L-band Synthetic aperture radar (SAR) data has been extensively used for forest aboveground biomass (AGB) estimation due to its higher saturation level. However, SAR backscatter is highly influenced by the topography characteristics along with the bio-geophysical properties of vegetation and underneath soil characteristics. This has limited the accuracy of directly relating the SAR backscatter with above ground biomass in highly undulated terrain. In this study, it has been observed that terrain degree of slope and aspect plays a vital role in influencing the SAR backscatter in addition with AGB. Because of this, the degree of slope and aspect along with SAR backscatter in HH (transmit and receive polarizations are horizontal) and HV (transmit horizontal and receive vertical) polarizations have been considered as inputs for Support Vector Machine (SVM) to improve the biomass retrieval accuracy. Our results demonstrate that the accuracy of AGB estimation over hilly terrain can be significantly improved by considering topographical characteristics in addition to L-band backscatter.
Định danh: https://dspace.ctu.edu.vn/jspui/handle/123456789/64164
ISSN: 0866-7187
Bộ sưu tập: Vietnam journal of Earth sciences

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
4.07 MBAdobe PDF
Your IP: 18.188.211.246


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.