Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://dspace.ctu.edu.vn/jspui/handle/123456789/66759
Nhan đề: | A hedge algebras based reasoning method for fuzzy rule based classifier |
Tác giả: | Pham, Dinh Phong Nguyen, Duc Du Hoang, Van Thong |
Từ khoá: | Fuzzy rule based classifier Hedge algebras Fuzziness measure Fuzziness intervals Semantically quantifying mapping value |
Năm xuất bản: | 2019 |
Tùng thư/Số báo cáo: | Vietnam Journal of Science and Technology;Vol. 57, No. 05 .- P.631–644 |
Tóm tắt: | The fuzzy rule based classifier (FRBC) design methods have intensively been being studied during recent years. The ones designed by utilizing hedge algebras as a formalism to generate the optimal linguistic values along with their (triangular and trapezoidal) fuzzy sets based semantics for the FRBCs have been proposed. Those design methods generate the fuzzy sets based semantics because the classification reasoning method still bases on the fuzzy set theory. One question arisen is whether there is a pure hedge algebras classification reasoning method so that the fuzzy sets based semantics of the linguistic values in the fuzzy rule bases can be replaced with the hedge algebras based semantics. This paper answers that question by presenting a fuzzy rule based classifier design method based on hedge algebras with a pure hedge algebras classification reasoning method. The experimental results over 17 real world datasets are compared to the existing methods based on hedge algebras and fuzzy sets theory showing that the proposed method is effective and produces good results. |
Định danh: | https://dspace.ctu.edu.vn/jspui/handle/123456789/66759 |
ISSN: | 2525-2518 |
Bộ sưu tập: | Vietnam journal of science and technology |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
_file_ Giới hạn truy cập | 2.11 MB | Adobe PDF | ||
Your IP: 18.117.105.184 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.