Please use this identifier to cite or link to this item: https://dspace.ctu.edu.vn/jspui/handle/123456789/71596
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPham, Loi Vu-
dc.date.accessioned2021-12-30T06:46:13Z-
dc.date.available2021-12-30T06:46:13Z-
dc.date.issued2020-
dc.identifier.issn0251-4184-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/71596-
dc.description.abstractThe inverse scattering problem for the perturbed string equation in characteristic variables on the whole axis is studied. Using the generalized Lax equation generated by the perturbed string equation, we derive the time-evolution of the scattering operator and the two-dimensional generalization from the one-dimensional Korteweg-de Vries equation. This enables us to solve the system of time-dependent fundamental equations in the inverse problem. Then, the solution of the two-dimensional generalization from the Korteweg-de Vries equation is found that is expressed through the found solution of this system.vi_VN
dc.language.isoenvi_VN
dc.relation.ispartofseriesActa Mathematica Vietnamica;Vol. 45, No. 04 .- P.807-831-
dc.subjectPerturbed string equation in characteristic variablesvi_VN
dc.subjectKernels of transform operatorsvi_VN
dc.subjectGeneralized Lax equationvi_VN
dc.subjectTwo-dimensional generalization from the KdV equationvi_VN
dc.subjectTime-evolution of the scattering operatorvi_VN
dc.subjectTime-dependent potential is uniquely restoredvi_VN
dc.titleThe inverse scattering problem for the perturbed string equation and Its application to integration of the two-dimensional generalization from Korteweg-de Vries equationvi_VN
dc.typeArticlevi_VN
Appears in Collections:Acta Mathematica Vietnamica 

Files in This Item:
File Description SizeFormat 
_file_
  Restricted Access
3.62 MBAdobe PDF
Your IP: 18.119.119.191


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.