Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này:
https://dspace.ctu.edu.vn/jspui/handle/123456789/71608
Nhan đề: | Ergodic theorems for laminations and foliations: recent results and perspectives |
Tác giả: | Nguyen, Viet Anh |
Từ khoá: | Riemann surface lamination Leafwise Poincare metric Singular holomorphie foliation Positive harmonic currents Multiplicative cocycles Lrgodic theorems Lyapunov exponents |
Năm xuất bản: | 2021 |
Tùng thư/Số báo cáo: | Acta Mathematica Vietnamica;Vol. 46, No. 01 .- P.9-101 |
Tóm tắt: | This report discusses recent results as well as new perspectives in the ergodic theory for Rie-mann surface laminations, with an emphasis on singular holomorphie foliations by curves. The central notions of these developments are leafwise Poincare metric, directed positive harmonic currents, multiplicative cocycles, and Lyapunov exponents. We deal with various ergodic theorems for such laminations: random and operator ergodic theorems, (geometric) Birkhoff ergodic theorems. Oscledce multiplicative ergodic theorem, and unique ergodicity theorems. Applications of these theorems are also given. In particular, we define and study the canonical Lyapunov exponents for a large family of singular holomorphic foliations on compact projective surfaces. Topological and algebro-geometric interpretations of these characteristic numbers are also treated. These results highlight the strong similarity as well as the fundamental differences between the ergodic theory of maps and that of Riemann surface laminations. Most of the results reported here are known. However, sufficient conditions for abstract heat diffusions to coincide with the leafwise heat diffusions (Section 5.2) arc new ones. |
Định danh: | https://dspace.ctu.edu.vn/jspui/handle/123456789/71608 |
ISSN: | 0251-4184 |
Bộ sưu tập: | Acta Mathematica Vietnamica |
Các tập tin trong tài liệu này:
Tập tin | Mô tả | Kích thước | Định dạng | |
---|---|---|---|---|
_file_ Giới hạn truy cập | 13.29 MB | Adobe PDF | ||
Your IP: 3.149.25.26 |
Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.