Vui lòng dùng định danh này để trích dẫn hoặc liên kết đến tài liệu này: https://dspace.ctu.edu.vn/jspui/handle/123456789/71608
Toàn bộ biểu ghi siêu dữ liệu
Trường DCGiá trị Ngôn ngữ
dc.contributor.authorNguyen, Viet Anh-
dc.date.accessioned2021-12-30T06:54:25Z-
dc.date.available2021-12-30T06:54:25Z-
dc.date.issued2021-
dc.identifier.issn0251-4184-
dc.identifier.urihttps://dspace.ctu.edu.vn/jspui/handle/123456789/71608-
dc.description.abstractThis report discusses recent results as well as new perspectives in the ergodic theory for Rie-mann surface laminations, with an emphasis on singular holomorphie foliations by curves. The central notions of these developments are leafwise Poincare metric, directed positive harmonic currents, multiplicative cocycles, and Lyapunov exponents. We deal with various ergodic theorems for such laminations: random and operator ergodic theorems, (geometric) Birkhoff ergodic theorems. Oscledce multiplicative ergodic theorem, and unique ergodicity theorems. Applications of these theorems are also given. In particular, we define and study the canonical Lyapunov exponents for a large family of singular holomorphic foliations on compact projective surfaces. Topological and algebro-geometric interpretations of these characteristic numbers are also treated. These results highlight the strong similarity as well as the fundamental differences between the ergodic theory of maps and that of Riemann surface laminations. Most of the results reported here are known. However, sufficient conditions for abstract heat diffusions to coincide with the leafwise heat diffusions (Section 5.2) arc new ones.vi_VN
dc.language.isoenvi_VN
dc.relation.ispartofseriesActa Mathematica Vietnamica;Vol. 46, No. 01 .- P.9-101-
dc.subjectRiemann surface laminationvi_VN
dc.subjectLeafwise Poincare metricvi_VN
dc.subjectSingular holomorphie foliationvi_VN
dc.subjectPositive harmonic currentsvi_VN
dc.subjectMultiplicative cocyclesvi_VN
dc.subjectLrgodic theoremsvi_VN
dc.subjectLyapunov exponentsvi_VN
dc.titleErgodic theorems for laminations and foliations: recent results and perspectivesvi_VN
dc.typeArticlevi_VN
Bộ sưu tập: Acta Mathematica Vietnamica 

Các tập tin trong tài liệu này:
Tập tin Mô tả Kích thước Định dạng  
_file_
  Giới hạn truy cập
13.29 MBAdobe PDF
Your IP: 216.73.216.166


Khi sử dụng các tài liệu trong Thư viện số phải tuân thủ Luật bản quyền.